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1 Definitions

Digraphs

A directed graphor digraph, for short,G is a pair(V, A) of a nonempty set oferticesV’ and
a set ofarcs A C V2 of ordered pairgv, w) of two distinct vertices), w € V. Such a pair is
informally understood as an arc pointing framto w. A digraph isacyclic or a DAG, if and
only if it does not contain directed cycles. subdagof DAG G is a DAGG’ = (V', A’) such
thatA’ C AandV’ C V'. We callG’ induced (by’) ifand only if A" = AN (V' x V).

Let G = (V, A) be a DAG. Aroot of G is a vertex with no incoming arcs. kafof G
is a vertex with no outgoing arcs. A vertex which is not a leaigrnal. A vertexv is a
child of a vertexw if and only if (w,v) € A. A vertexv is adescendentf a vertexw if and
only if there is a directed path fron» to v. The heightof G is the length (number of arcs)
of a longest directed path i@. The graphunderlyingG is the (undirected) graptV, E') with
E = {{v,w} | (v,w) € A}, i.e. the graph obtained when we forget the direction of the arcs in
G. A componendf G is a subdag induced by the vertices of a component of the graph underlying
G.

A directed treds a DAG such that for any two verticesw € V there is at most one directed
path fromv to w. A poly-treeis a DAG G such that the graph underlyirg is a forest.

Concept graphs

A concept graplis a quadrupléG, A4, Ag, Ap) foraDAGG = (V, A) and functions\a, A, Ap
calledlabelingssuch that

1. Aa: A— N,

2. Ap is injective and defined on the leafsGf
3. \p is defined on the internal vertices @f
4

. If v is an internal vertex, theih 4 either enumerates the set of arcs leavingr is con-
stantly O on this set. In the first casés ordered in the secondinordered

5. for internal vertices:, v with Ap(u) = Ap(v) the following holds:
(a) either bothu andv are ordered or both andv are unordered,
(b) w andv have the same number of childrenGh
©) {(', Aa(v, ) | (v,0) € A} # {(u/, Aa(u, u")) | (u, ') € A}.

Usually we denote the range afz by B and the range okp by P. Elements ofB are called
entities those ofP predicateor relations A predicate iorderedif and only if at least one vertex
(equivalently: all vertices) labeled with it is ordered. A concept grapirdered(unordereq if
and only if all its vertices are ordered (unordered).



Analogy morphisms

LetG = (V, A) andG’ = (V’, A") be two DAGs. Asubdag isomorphism froif¥ to G’ is an
isomorphismy of a subdag o5 onto a subdag of’. We write Gy = (V, Ay) for the subdag
on the domain off and call it thesubdag associated with.

LetG = (G, a,\p,AB) andG’ = (G’,Aa/, \pr, Ap/) be two concept graphs. An
analogy morphisnof G andG’ is a subdag isomorphism frofd to G’ satisfying the following
three conditions:

1. for all v € V also all children ofv in G are inVy.

2. Apr(f(v)) = Ap(v) forallv € V;.

3. A (), f(w))) = Aa((v,w)) forall (v,w) € 4.

The value of analogy morphisms

Let a concept graphg = (G, A4, Ap, Ap) be given. Relative to a functigoval : P — N and
two naturaldm, trd € N we associate galuation valmapping vertices oy to avaluein N.
This function is defined inductively over the height of the verteginthe value of a vertex is

matchv) + Z trd - val(w)
(w,v)€EA
wherematch(v) ispval(Ap(v)) if v is an internal vertex andn if v is a leaf. The valugal(G’)
of asubdagy’ = (V',A") of Gis }, . val(v). The value of an analogy morphisfnof two
concept graphs igal(Gy).
Itis easy to see that the value of a given analogy morphism between two concept graphs can
be computed in time polynomial in the size of the concept graphs.

The problem

The NP-optimization problem is
Input: Two concept graph§ andg’, a functionpval : P — N, whereP are the
predicates inG, and naturaldm, trd € N.
Solutions:All analogy morphisms betweeh andg’
Cost: The valuatiorval associated witlpval, Im, trd
Goal: Maximization.
The associated decision problem is
Input: Two concept graph§ andg’, a functionpval : P — N, whereP are the
predicates irG, naturaldm, trd € N and a naturak € N
Question:ls there an analogy morphism betwegandG’ of value at leask?
Here it is understood that “value” refers to the valuation associatedpwih Im, trd
In our work we are concerned with the following slightly simplified version. Of course

intractability of this simplified version immediately implies intractability of the non-simplified
version.

SMAD
Input:  Two concept graph€ andg’.
Problem: Is there an analogy morphism betwggandg’ of value at least
k?

Here it shall be understood that value refers to the valuation associated with the fymelon
which is constantly one and the constants= trd = 1. We denote this valuation bxal.



2 Complexity Results

Classical complexity

SUBGRAPH | SOMORPHISM
Input:  Two graphsG andH.
Problem: Is H isomorphic to a subgraph 6f?

SUBFOREST|ISOMORPHISMis the restriction ofSUBGRAPH |SOMORPHISMtO instances
whered is a tree and{ is a forest.

Lemma 1 There is a polynomial time reduction froBUBGRAPH | SOMORPHISMtO SMAD.
Proof: Let G = (V, E) be a graph. We define the concept graph
C(G) = (C(G),Aa,Ap,AB)
as follows. The DAGC(G) has verticed” U E and arcs
A:={(e,v) |veEec E}

A4 is constantly O\ p is constantlyp (for some predicatg) on E and ) s is the identity onV/.

Let (G, H) be an instance BUBGRAPHISOMORPHISM Then if f is an isomorphism from
H onto a subgraph df, thenf’ is an analogy morphism betweé&(H) andC(G), wheref’ is
defined as follows: it maps all entities (verticesidj as f does and additionally maps an edge
{h, '} of H (which is also a vertex i (H)) to { f(h), f(h")} (a vertex inC(G)). The value
of f' is the value ofC(G).

Conversely, iff’ is an analogy morphism betwe€H) andC(G) with valueval(C(H)),
then its domain is the set of all vertices@{ H). Hence its restriction to the vertices Hf is an
isomorphism to a subgraph 6f - why? To see this lefh, 4’} be an edge ofi. This is a vertex
in C(H). Sincef’ preserves predicates, this vertex is mapped to a vert€¥ @) which is an
edge{g, ¢'} of G. By defnition of analogy morphisms, thdif (), f(h')} equals{g, ¢'}, and
so is an edge of:.

It follows that (G, H) — (C(H),C(G),val(C(H))) defines a polynomial time reduction
as claimed. O

It is easy to see the&BMAD € NP. Becaus&UBGRAPH ISOMORPHISMis famously NP-
complete, it follows

Corollary 2 SMAD is NP-complete.
The reduction given in the previous Lemma is robust enough to survive under various re-
strictions. For example, observe that if a graghs a forest, therC(G) is a poly-tree. It is

well-known thatSUBFORESTISOMORPHISMis NP-complete. It follows that

Corollary 3 SMAD restricted to instances where the given concept graphs are poly-trees is NP-
complete.



Parameterized complexity

In the paper we make several tractability and intractability claims numbered from 1 to 7. We
prove them subsequently. All proofs of intractability use some common assumption from pa-
rameterized complexity. The assumption thgt}\4 FPT is strong enough for all our purposes.

Claim 1 SMAD is fp-intractable for parameter s€ty, a, f, s}.

Proof: It is enough to show thaBmaD is NP-hard even when instances are restricted to those
where all parameters are required to be bounded by a constant. Then it follows that the param-
eterized problem is complete for the huge class paraNP [1, Theorem 2.14] and is thus fixed-
parameter tactable if and only if £ NP.

This in turn follows by a reduction due to Veale et al. [2] from the NP-complete problem
3-DIMENSIONAL MATCHING which produces concept graphs such that 1, = 2, f = 1
ands = 0. g

Remark 4 As a matter of fact, the reduction in [2] produces ordered concept graphs.
Claim 2 SMAD is fp-intractable for parameter sgt/h}.

Here the parameter is to be understood teee{n1/h1,n2/h2}.

Proof: For a concept grapf = (G, Aa, Ap, Ap) defineG as follows: sayG hasn vertices.
We add toG a directed path withw vertices and an arc from the leaf of this path to a leafiof
We label each new vertex with an own new predicate. All new arcs get label 1. Thes2n
vertices and height. Thus the parameter of this instance is at n2ost

AninstancgG, G', k) of SMAD is equivalent tqG, G’, k) (provided the new predicate labels
chosen in the construction ¢fandg’ are different) because no analogy morphism betwg@en
andg’ can involve some of the new vertices.

But the instancéG, G', k) has parameter at most 2, so paraNP-hardness follows as in the
previous proof. a

Remark 5 The construction above preserves the property of being ordered, Gés drdered,
then so ig7.

Claim 3 SMAD is fp-tractable for parameter s€tu }.
Proof: As we have explained in the paper, this is trivial. |
Claim 4 SMAD is fp-intractable for parameter sdts, r, h, a, p}.

Proof: It is well-known that the parameterized problem

p-CLIQUE
Input: A graphG and a naturak € N.
Parameter: k.
Problem: DoesG contain a clique withk elements?

is W[1]-hard. It thus suffices to give a parameterized reduction from this problem.

Let C} be a clique witht vertices.G has & clique if and only if(G, Cy) is a “yes” instance
of SUBGRAPH ISOMORPHISM hence by Lemma 1, if and only {{C%, G, val(C%)) is a “yes”
instance oSMAD. The parameters of the instance producechare- k,a =2,p=r=h =1,
allin O(k). a



Claim 5 SMAD is fp-tractable for parameter s€b}.

Proof: Let (G, G’, ¢) be an instance dMAD. Let k denote the maximum number of leafs in one
of the given concept graphs.

Let F be the set of bijections between a subset of leafé'@fnd a subset of leafs @f’.
Letg € F. We stepwise extend this morphism. For each vertice§level one inG there is
at most one vertex’ of level one inG’ such that extending by mappingv to v’ is an analogy
morphism. We make all possible such extensions. Then we proceed in the same way with the
vertices in level two and so on. This way we generate in polynomial time an analogy morphism
with the best possible value among those whose restriction to the leafsgequal

We compute this value for eaghc F and accept if we find a value ¢. Doing this amounts
to | F'| times a polynomial time computation. Becays# can be effectively bounded it this
is fpt time. d

Remark 6 Note that the proof proves Claim 7 in the paper, which also implies the weaker claim,
Claim 5 in the paper.

Claim6 Claim 1 to 5 hold true wherSMAD is restricted to instances with ordered concept
graphs only.

Proof: By Remarks 4 and 5 we are left to verify this for Claim 4. There in the proof we con-
structed an instance with unordered concept grapfts,) andC(G).

Fix an arbitrary linear ordex on the vertices of5. We transformC(G) to an ordered
concept graptC'(G)’ by labeling an ar¢{v,v’'},v) in C(G) (for an edge{v, v’} of G) with
1if v < v" and with 2 otherwise. Clearly any analogy morphism betwagnordered version
of C(Cx) andC(G)’ is also an analogy morphism betwe€f{C}) and C(G) of the same
value. Conversely if there is an analogy morphism betw@éfi;,) andC(G) then this is also
an analogy morphism betwe@hG)" andsomeordered version of (Cy). Thus by the proof
of Claim 4, we conclude that has ak clique if and only if there is an ordered versi6{Cy,)’
of C(Ck) such tha{C(Cy)’, C(G)',val(C(Ck))) is a “yes” instance 08MAD.

For the sake of contradiction assume that there is an fpt algorthsnlving SMAD with
parameter sefn.,r, h,a,p}. We get a contradiction by deriving thatCLIQUE would then
also be fixed-parameter tractable. By the latter condition of the above equivalence we get an
fpt algorithm solvingp-CLIQUE by simulatingA on input(C(Cy)’, C(G)’,val(C(Cy))) for all
possible ordered versiors(Cy)’ of C(Ck). As the number of such ordered versions can be
effectively bounded irk, this amounts to an fpt running time. d
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