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1 Definitions

Digraphs

A directed graphor digraph, for short,G is a pair(V, A) of a nonempty set ofverticesV and
a set ofarcsA ⊆ V 2 of ordered pairs(v, w) of two distinct verticesv, w ∈ V . Such a pair is
informally understood as an arc pointing fromv to w. A digraph isacyclic, or a DAG, if and
only if it does not contain directed cycles. Asubdagof DAG G is a DAGG′ = (V ′, A′) such
thatA′ ⊆ A andV ′ ⊆ V ′. We callG′ induced (byV ′) if and only if A′ = A ∩ (V ′ × V ′).

Let G = (V, A) be a DAG. Aroot of G is a vertex with no incoming arcs. Aleaf of G
is a vertex with no outgoing arcs. A vertex which is not a leaf isinternal. A vertex v is a
child of a vertexw if and only if (w, v) ∈ A. A vertexv is adescendentof a vertexw if and
only if there is a directed path fromw to v. The heightof G is the length (number of arcs)
of a longest directed path inG. The graphunderlyingG is the (undirected) graph(V, E) with
E = {{v, w} | (v, w) ∈ A}, i.e. the graph obtained when we forget the direction of the arcs in
G. A componentof G is a subdag induced by the vertices of a component of the graph underlying
G.

A directed treeis a DAG such that for any two verticesv, w ∈ V there is at most one directed
path fromv to w. A poly-treeis a DAGG such that the graph underlyingG is a forest.

Concept graphs

A concept graphis a quadruple(G, λA, λB , λP ) for a DAGG = (V, A) and functionsλA, λB , λP

calledlabelingssuch that

1. λA : A → N,

2. λB is injective and defined on the leafs ofG,

3. λP is defined on the internal vertices ofG,

4. If v is an internal vertex, thenλA either enumerates the set of arcs leavingv or is con-
stantly 0 on this set. In the first casev is ordered, in the secondunordered.

5. for internal verticesu, v with λP (u) = λP (v) the following holds:

(a) either bothu andv are ordered or bothu andv are unordered,

(b) u andv have the same number of children inG,

(c) {(v′, λA(v, v′)) | (v, v′) ∈ A} 6= {(u′, λA(u, u′)) | (u, u′) ∈ A}.
Usually we denote the range ofλB by B and the range ofλP by P . Elements ofB are called
entities, those ofP predicatesor relations. A predicate isorderedif and only if at least one vertex
(equivalently: all vertices) labeled with it is ordered. A concept graph isordered(unordered) if
and only if all its vertices are ordered (unordered).
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Analogy morphisms

Let G = (V, A) andG′ = (V ′, A′) be two DAGs. Asubdag isomorphism fromG to G′ is an
isomorphismf of a subdag ofG onto a subdag ofG′. We writeGf = (Vf , Af ) for the subdag
on the domain off and call it thesubdag associated withf .

Let G := (G, λA, λP , λB) andG′ = (G′, λA′ , λP ′ , λB′) be two concept graphs. An
analogy morphismof G andG′ is a subdag isomorphism fromG to G′ satisfying the following
three conditions:

1. for all v ∈ Vf also all children ofv in G are inVf .

2. λP ′(f(v)) = λP (v) for all v ∈ Vf .

3. λA′((f(v), f(w))) = λA((v, w)) for all (v, w) ∈ Af .

The value of analogy morphisms

Let a concept graphsG = (G, λA, λP , λB) be given. Relative to a functionpval : P → N and
two naturalslm, trd ∈ N we associate avaluation valmapping vertices ofG to a value in N.
This function is defined inductively over the height of the vertex inG: the value of a vertexv is

match(v) +
∑

(w,v)∈A

trd · val(w)

wherematch(v) is pval(λP (v)) if v is an internal vertex andlm if v is a leaf. The valueval(G′)
of a subdagG′ = (V ′, A′) of G is

∑
v∈V ′ val(v). The value of an analogy morphismf of two

concept graphs isval(Gf ).
It is easy to see that the value of a given analogy morphism between two concept graphs can

be computed in time polynomial in the size of the concept graphs.

The problem

The NP-optimization problem is

Input: Two concept graphsG andG′, a functionpval : P → N, whereP are the
predicates inG, and naturalslm, trd∈ N.
Solutions:All analogy morphisms betweenG andG′
Cost: The valuationval associated withpval, lm, trd.
Goal: Maximization.

The associated decision problem is

Input: Two concept graphsG andG′, a functionpval : P → N, whereP are the
predicates inG, naturalslm, trd∈ N and a naturalk ∈ N
Question:Is there an analogy morphism betweenG andG′ of value at leastk?

Here it is understood that “value” refers to the valuation associated withpval, lm, trd.

In our work we are concerned with the following slightly simplified version. Of course
intractability of this simplified version immediately implies intractability of the non-simplified
version.

SMAD

Input: Two concept graphsG andG′.
Problem: Is there an analogy morphism betweenG andG′ of value at least

k?

Here it shall be understood that value refers to the valuation associated with the functionpval
which is constantly one and the constantslm = trd = 1. We denote this valuation byval.

2



2 Complexity Results

Classical complexity

SUBGRAPH ISOMORPHISM

Input: Two graphsG andH.
Problem: Is H isomorphic to a subgraph ofG?

SUBFOREST ISOMORPHISM is the restriction ofSUBGRAPH ISOMORPHISM to instances
whereG is a tree andH is a forest.

Lemma 1 There is a polynomial time reduction fromSUBGRAPH ISOMORPHISMto SMAD .

Proof: Let G = (V, E) be a graph. We define the concept graph

C(G) = (C(G), λA, λP , λB)

as follows. The DAGC(G) has verticesV ∪ E and arcs

A := {(e, v) | v ∈ e ∈ E}.

λA is constantly 0,λP is constantlyp (for some predicatep) onE andλB is the identity onV .
Let (G, H) be an instance ofSUBGRAPH ISOMORPHISM. Then iff is an isomorphism from

H onto a subgraph ofG, thenf ′ is an analogy morphism betweenC(H) andC(G), wheref ′ is
defined as follows: it maps all entities (vertices ofH) asf does and additionally maps an edge
{h, h′} of H (which is also a vertex inC(H)) to {f(h), f(h′)} (a vertex inC(G)). The value
of f ′ is the value ofC(G).

Conversely, iff ′ is an analogy morphism betweenC(H) andC(G) with valueval(C(H)),
then its domain is the set of all vertices ofC(H). Hence its restriction to the vertices ofH is an
isomorphism to a subgraph ofG - why? To see this let{h, h′} be an edge ofH. This is a vertex
in C(H). Sincef ′ preserves predicates, this vertex is mapped to a vertex inC(G) which is an
edge{g, g′} of G. By defnition of analogy morphisms, then{f(h), f(h′)} equals{g, g′}, and
so is an edge ofG.

It follows that (G, H) 7→ (C(H), C(G), val(C(H))) defines a polynomial time reduction
as claimed. ¤

It is easy to see thatSMAD ∈ NP. BecauseSUBGRAPH ISOMORPHISM is famously NP-
complete, it follows

Corollary 2 SMAD is NP-complete.

The reduction given in the previous Lemma is robust enough to survive under various re-
strictions. For example, observe that if a graphG is a forest, thenC(G) is a poly-tree. It is
well-known thatSUBFORESTISOMORPHISMis NP-complete. It follows that

Corollary 3 SMAD restricted to instances where the given concept graphs are poly-trees is NP-
complete.
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Parameterized complexity

In the paper we make several tractability and intractability claims numbered from 1 to 7. We
prove them subsequently. All proofs of intractability use some common assumption from pa-
rameterized complexity. The assumption that W[1] 6= FPT is strong enough for all our purposes.

Claim 1 SMAD is fp-intractable for parameter set{h, a, f, s}.

Proof: It is enough to show thatSMAD is NP-hard even when instances are restricted to those
where all parameters are required to be bounded by a constant. Then it follows that the param-
eterized problem is complete for the huge class paraNP [1, Theorem 2.14] and is thus fixed-
parameter tactable if and only if P= NP.

This in turn follows by a reduction due to Veale et al. [2] from the NP-complete problem
3-DIMENSIONAL MATCHING which produces concept graphs such thath = 1, a = 2, f = 1
ands = 0. ¤

Remark 4 As a matter of fact, the reduction in [2] produces ordered concept graphs.

Claim 2 SMAD is fp-intractable for parameter set{n/h}.

Here the parameter is to be understood to bemax{n1/h1, n2/h2}.

Proof: For a concept graphG = (G, λA, λP , λB) defineG̃ as follows: sayG hasn vertices.
We add toG a directed path withn vertices and an arc from the leaf of this path to a leaf ofG.
We label each new vertex with an own new predicate. All new arcs get label 1. ThenG̃ has2n
vertices and heightn. Thus the parameter of this instance is at most2.

An instance(G,G′, k) of SMAD is equivalent to(G̃, G̃′, k) (provided the new predicate labels
chosen in the construction of̃G andG̃′ are different) because no analogy morphism betweenG̃
andG̃′ can involve some of the new vertices.

But the instance(G̃, G̃′, k) has parameter at most 2, so paraNP-hardness follows as in the
previous proof. ¤

Remark 5 The construction above preserves the property of being ordered, i.e. ifG is ordered,
then so isG̃.

Claim 3 SMAD is fp-tractable for parameter set{n1}.

Proof: As we have explained in the paper, this is trivial. ¤

Claim 4 SMAD is fp-intractable for parameter set{n2, r, h, a, p}.

Proof: It is well-known that the parameterized problem

p-CLIQUE

Input: A graphG and a naturalk ∈ N.
Parameter: k.

Problem: DoesG contain a clique withk elements?

is W[1]-hard. It thus suffices to give a parameterized reduction from this problem.
Let Ck be a clique withk vertices.G has ak clique if and only if(G, Ck) is a “yes” instance

of SUBGRAPH ISOMORPHISM, hence by Lemma 1, if and only if(Ck, G, val(Ck)) is a “yes”
instance ofSMAD . The parameters of the instance produced aren2 = k, a = 2, p = r = h = 1,
all in O(k). ¤

4



Claim 5 SMAD is fp-tractable for parameter set{o}.

Proof: Let (G,G′, `) be an instance ofSMAD . Letk denote the maximum number of leafs in one
of the given concept graphs.

Let F be the set of bijections between a subset of leafs ofG and a subset of leafs ofG′.
Let g ∈ F . We stepwise extend this morphism. For each verticesv of level one inG there is
at most one vertexv′ of level one inG′ such that extendingg by mappingv to v′ is an analogy
morphism. We make all possible such extensions. Then we proceed in the same way with the
vertices in level two and so on. This way we generate in polynomial time an analogy morphism
with the best possible value among those whose restriction to the leafs equalg.

We compute this value for eachg ∈ F and accept if we find a value≥ `. Doing this amounts
to |F | times a polynomial time computation. Because|F | can be effectively bounded ink, this
is fpt time. ¤

Remark 6 Note that the proof proves Claim 7 in the paper, which also implies the weaker claim,
Claim 5 in the paper.

Claim 6 Claim 1 to 5 hold true whenSMAD is restricted to instances with ordered concept
graphs only.

Proof: By Remarks 4 and 5 we are left to verify this for Claim 4. There in the proof we con-
structed an instance with unordered concept graphsC(Ck) andC(G).

Fix an arbitrary linear order< on the vertices ofG. We transformC(G) to an ordered
concept graphC(G)′ by labeling an arc({v, v′}, v) in C(G) (for an edge{v, v′} of G) with
1 if v < v′ and with 2 otherwise. Clearly any analogy morphism betweenanyordered version
of C(Ck) and C(G)′ is also an analogy morphism betweenC(Ck) and C(G) of the same
value. Conversely if there is an analogy morphism betweenC(Ck) andC(G) then this is also
an analogy morphism betweenC(G)′ andsomeordered version ofC(Ck). Thus by the proof
of Claim 4, we conclude thatG has ak clique if and only if there is an ordered versionC(Ck)′

of C(Ck) such that(C(Ck)′, C(G)′, val(C(Ck))) is a “yes” instance ofSMAD .
For the sake of contradiction assume that there is an fpt algorithmA solving SMAD with

parameter set{n2, r, h, a, p}. We get a contradiction by deriving thatp-CLIQUE would then
also be fixed-parameter tractable. By the latter condition of the above equivalence we get an
fpt algorithm solvingp-CLIQUE by simulatingA on input(C(Ck)′, C(G)′, val(C(Ck))) for all
possible ordered versionsC(Ck)′ of C(Ck). As the number of such ordered versions can be
effectively bounded ink, this amounts to an fpt running time. ¤
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