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In this supplementary material, we provide proofs of the plaxity-theoretic statements ap-
pearing in our text. We assume familiarity with basic conseép both classical [2] and parameter-
ized [1] computational complexity theory. All of our intriability proofs will involve reductions
from the following well-known problem:

DOMINATING SET

Input A graphG = (V, A) and an integek.

Question Is there a dominating set i of size at most;, i.e,, is there a subsét’ C V, |V'| < k,
such that for each € V, eitherv € V' or 3(v,v’) € E such that’ € V'?

DOMINATING SETis known to beV P-complete in general [2] and’[2]-hard relative to parameter-
set{k} [1].

Theorem 1 NA-REC isN P-hard

Proof: Given an instancé = (G, k) of DOMINATING SET, construct the following instance
I'=(W,A,M,s,l) of NA-REC: LetE = {U,D, L, A, B, %, V1, Va, ... Vjy|, —, F'}, with F" being
freespace and all other squares being obstacles. Worid a ring-shaped track of freespaces
surrounded by obstacles on both the inner and outer sidé® afdack. This track can be divided
into north, east, south, and west regions, and each reg®imhar and outer sides. The track is
specified as follows:

¢ the east region consists Bf-squares on both sides.
¢ the south region consists atsquares on both sides.
e the west region consists bf-squares on both sides.

e The north region has an initial pair gf-squares on the left and a final pair Bfsquares on
the right. In between ar@/| blocks of length V| if |V| is odd andV| + 1 otherwise apiece
separated by pairs of-squares. Given an arbitrary order on the vertice® jrsquare in
the top side of each block corresponds to veitexder the ordering; whejV'| is even, the
vertices inV are split into two even-length sub-blocks with a middle gpesjuare. Block,

1 <1 < |V|, corresponds to a particular vertexc V', and encodes the vertices adjacent to
v; (includingu; itself) on the top side of the block (with vertex-positiore m the neighbour-
hood (or the middle spacer-squarel|lif| is even) marked with--squares) and all-squares
on the bottom side of the block.

A graph G and its associated world are shown in Figure 1. Note thabnsgare modified at
corners of the track to ensure that an architecture can ehdingction at the corners under the
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Figure 1: lllustration of reduction from BMINATING SET to NA-REC given in Theorem 1. a) Sample gragh b)
World W constructed frontz. ¢) Subsumption architecturé associated witliz and1/. Note that as the given graph
G has4 vertices, i.e.|V| = 4, by the construction specified in the reduction, the pet@padiusr of A is 2, i.e.,

r= L‘Z—'j = L%J = 2. For clarity, freespace squares are denoted by a periashihsifF' in (b).

layer-ordering and visibility constraints below. Architare A has perception-radius= | |V|/2]
and consists ofi’| + 6 layers, such that the layers in descending order are:

e A layer that issues & action if anA-square is detected,;
e Alayer that issues & action if a%-square is detected;

e |V layers, one for each vertexc V, that issue actions if the square correspondingtcs
detected;

¢ A layer that issues & action if al/-square is detected,;
e A layer that issues 8 action if aL-square is detected;
e A layer that issues & action if aD-square is detected; and

e A layer that issues & action if aB-square is detected.

The subsumption links are output-inhibition links from dog@most layer to each of the vertex
layers. Such an architecture for an example gr@m@md associated world” is shown in part (c)
of Figure 1. Finally, letM = (), s = k, andl = 0. Observe that this construction can be done in
time polynomial in the size of the given instantef DOMINATING SET.

The following observations will be useful:

1. Both A and anyA’ created by subsumption-link modification can only move ioglovise
fashion intV.



2. A can move past any freespacdinexcept the middle freespace in each vertex block. This
is so because in each such middle freespace, neither of treB-squares surrounding the
vertex-block which would allowA to move forward can be sensed (as ||V]/2]).

3. The only way any’ created fromA by subsumption-link modification can progress past the
middle freespace in a vertex block is to remove the inhibitioks from the topmost layer to
one or more of the vertex layers i corresponding to a vertex-square that is present in that
block (which could be sensed under the givén

The above implies that to make anly derived fromA by subsumption-link modification fully
navigable forlV/, those link modifications must enabié to progress past the middle freespace of
each vertex-block iml’.

To prove that this construction is a reduction, we must slawthe answer to the given instance
of DOMINATING SET s “Yes” if and only if the constructed instance of NA-REC hasaasociated
A’ that is fully navigable fol//. Let us consider the two implications separately. If thensers
to the given instance of DMINATING SET is “Yes”, then there is a dominating s&t such that
V' < k. ConstructA’ from A by deleting the subsumption links from the topmost layerlto a
|[V'| < k = s vertex layers corresponding to verticesli. These layers will now be active
whenever they detect squares corresponding to verticésimthe vertex blocks i/, which, by
the observations above, will allow' to navigate between any two freespaceslin Conversely,
if there is anA’ that is fully navigable foil’, A’ was constructed from by removing at most
subsumption links fromd; let V’ be the set of vertices i@ corresponding to the now-active vertex
layers inA’. By the construction ofl/, each vertex € V' is either inV’ or is adjacent to a vertex
in V', implying thatl”’ is a dominating set of size at mast k in G. |

Theorem 2 NA-DES isN P-hard

Proof (sketch): Follows by a slight variant of the reduction in Theorem 1 vhéaeletes)/ and
setsf = 1. The proof of correctness of this reduction is identicahat for Theorem 1. |

Result 1 NA-REC and NA-DES ar® P-hard.
Proof: Follows from Theorems 1 and 2. |

Corollary 1 NA-REC is fp-intractable for parameter-sgt, f, [, |M|}.

Proof: Follows from thelV[2]-hardness of DMINATING SET for parameter-sefk} and the re-
duction in Theorem 1, in whick= k, f = 1, and|M| = [ = 0. |

Theorem 3 NA-REC is fp-intractable for parameter-sgt, f, [, |L|}.

Proof (sketch): Modify the reduction in Theorem 1 to |& be such that the bottom-side squares
in the vertex blocks are now the same as the top-side squaregliminate the%-squares,A
consist of the lowest five layers and the topmost layer of tigaral A, M consist of the vertex-
layers from the original4, s = 0, andl = k. The result then follows from th&/[2]-hardness
of DOMINATING SET for parameter-sefk} and the reduction above fromdMINATING SET to
NA-REC in whichs =0, f = 1,1l =k, and|L| < k + 6. |



Result 2 NA-REC is fp-intractable for parameter-sdts f, [, |M|} and{s, f,,|L|}.

Proof: Follows from Corollary 1 and Theorem 3. |

Lemma l Given an architectured, a world 1/, and initial and final positions and d with 1V,
whether or notd can navigate frons to d can be computed i@ (|IV||A]) time.

Proof: The action computed by at a positiorp in W can be determined i@(|A|) time. Observe
that the behavior ofl at p is fixed, in that regardless of whethehas been encountered once or
more by A, the same action is generated. Hence, when startedifitA doubles back on any
previously-entered squard, can never encountel As A can travel to at mogiV| — 2 different
squares before enterinly it can be determined ifi/’| moves whether can reachl froms. |

Theorem 4 NA-REC is fp-tractable for parameter-sgi_|, | M |}.

Proof (sketch): The number of subsumption link-configurations 4fis a function of|L|, i.e.,
IEIIE=0/2 - As s < |L| andl < |M]|, the number of possibld’ that can be generated frorhis
a function of|L| and|M|. To complete the proof, observe that each such configuratiaf A
can be evaluated wit” in polynomial time (as there at&/|(|1V| — 1)/2 source-destination pairs
in W and the reachability for each pair can be determine@ (i ||1V|) time by Lemma 1) and
checked to see ift and A’ differ by at mosts subsumption-links irD (max(|A|, |A’])) time. |

Theorem 5 NA-REC is fp-tractable for parameter-sgit|}.

Proof (sketch): Both |L| and|M | are bounded by the number of possible Boolean functions over

|E| times the number of possible actions a layer may generate,l| < 2271 % 4. Substituting
this | E|-expression for each occurrence|éf and|)M | in the runtime of the algorithm described
in Theorem 4 gives an algorithm for NA-REC that is fp-tractatar {|E|}. |

Result 3 NA-REC is fp-tractable for parameter-sgt.|, | M|} and and{|E|}.

Proof: Follows from Theorems 4 and 5. |

Result 4 NA-DES is fp-intractable for parameter-sgt, f, [, |L|}.

Proof (sketch): Modify the reduction in Theorem 3 to eliminafed and explicitly setf = 1.
The result then follows from th#/[2]-hardness of DMINATING SET for parameter-sefk} and
the reduction above from ®INATING SET to NA-DES in whichs = 0, f = 1,1 = 0, and
|IL| < k+6. |

Result 5 NA-DES is fp-tractable for parameter-sgi|, f}.



Proof (sketch): Consider the following algorithm: By comparison against alégble values of
the exists-predicates forZ, possible layers ovel that are not already part of can be isolated;
call this set of layer$’. This setP can be further reduced to those layers that have triggeditton
formulas of length at most over F; call this setP’. Evaluate allA’ created by adding at moékt
layers fromP”’ to and modifying at most subsumption-links ofl to see if any are fully navigable
for W and output accordingly. To complete the proof, note thamnite polynomial quantities in
the runtime of this algorithmi.g., the number of possible layers ovEr(QQ‘E' x 4), the number of
possible values of therists-predicates foz (2/71), the number of trigger-condition formulas of
length at mosyf (< f x |E|f)) are all functions of £'| and f. |
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