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In this supplementary material, we provide proofs of the complexity-theoretic statements ap-
pearing in our text. We assume familiarity with basic concepts in both classical [2] and parameter-
ized [1] computational complexity theory. All of our intractability proofs will involve reductions
from the following well-known problem:

DOMINATING SET

Input: A graphG = (V,A) and an integerk.
Question: Is there a dominating set inG of size at mostk, i.e., is there a subsetV ′ ⊆ V , |V ′| ≤ k,
such that for eachv ∈ V , eitherv ∈ V ′ or ∃(v, v′) ∈ E such thatv′ ∈ V ′?

DOMINATING SET is known to beNP -complete in general [2] andW [2]-hard relative to parameter-
set{k} [1].

Theorem 1 NA-REC isNP -hard

Proof: Given an instanceI = 〈G, k〉 of DOMINATING SET, construct the following instance
I ′ = 〈W,A,M, s, l〉 of NA-REC: LetE = {U,D,L,A,B, %, V1, V2, . . . V|V |,−, F}, with F being
freespace and all other squares being obstacles. WorldW is a ring-shaped track of freespaces
surrounded by obstacles on both the inner and outer sides of the track. This track can be divided
into north, east, south, and west regions, and each region has inner and outer sides. The track is
specified as follows:

• the east region consists ofD-squares on both sides.

• the south region consists ofL-squares on both sides.

• the west region consists ofU -squares on both sides.

• The north region has an initial pair ofA-squares on the left and a final pair ofB-squares on
the right. In between are|V | blocks of length|V | if |V | is odd and|V | + 1 otherwise apiece
separated by pairs ofA-squares. Given an arbitrary order on the vertices inV , squarei in
the top side of each block corresponds to vertexi under the ordering; when|V | is even, the
vertices inV are split into two even-length sub-blocks with a middle spacer-square. Blocki,
1 ≤ i ≤ |V |, corresponds to a particular vertexvi ∈ V , and encodes the vertices adjacent to
vi (includingvi itself) on the top side of the block (with vertex-positions not in the neighbour-
hood (or the middle spacer-square, if|V | is even) marked with−-squares) and all%-squares
on the bottom side of the block.

A graphG and its associated world are shown in Figure 1. Note that regions are modified at
corners of the track to ensure that an architecture can change direction at the corners under the
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Figure 1: Illustration of reduction from DOMINATING SET to NA-REC given in Theorem 1. a) Sample graphG. b)
World W constructed fromG. c) Subsumption architectureA associated withG andW . Note that as the given graph
G has4 vertices, i.e.,|V | = 4, by the construction specified in the reduction, the perceptual radiusr of A is 2, i.e.,
r = ⌊ |V |

2
⌋ = ⌊ 4

2
⌋ = 2. For clarity, freespace squares are denoted by a period instead ofF in (b).

layer-ordering and visibility constraints below. ArchitectureA has perception-radiusr = ⌊|V |/2⌋
and consists of|V | + 6 layers, such that the layers in descending order are:

• A layer that issues aE action if anA-square is detected;

• A layer that issues aN action if a%-square is detected;

• |V | layers, one for each vertexv ∈ V , that issueE actions if the square corresponding tov is
detected;

• A layer that issues aN action if aU -square is detected;

• A layer that issues aW action if aL-square is detected;

• A layer that issues aS action if aD-square is detected; and

• A layer that issues aE action if aB-square is detected.

The subsumption links are output-inhibition links from thetopmost layer to each of the vertex
layers. Such an architecture for an example graphG and associated worldW is shown in part (c)
of Figure 1. Finally, letM = ∅, s = k, andl = 0. Observe that this construction can be done in
time polynomial in the size of the given instanceI of DOMINATING SET.

The following observations will be useful:

1. BothA and anyA′ created by subsumption-link modification can only move in a clockwise
fashion inW .

2



2. A can move past any freespace inW except the middle freespace in each vertex block. This
is so because in each such middle freespace, neither of theA or B-squares surrounding the
vertex-block which would allowA to move forward can be sensed (asr = ⌊|V |/2⌋).

3. The only way anyA′ created fromA by subsumption-link modification can progress past the
middle freespace in a vertex block is to remove the inhibition links from the topmost layer to
one or more of the vertex layers inA corresponding to a vertex-square that is present in that
block (which could be sensed under the givenr).

The above implies that to make anyA′ derived fromA by subsumption-link modification fully
navigable forW , those link modifications must enableA′ to progress past the middle freespace of
each vertex-block inW .

To prove that this construction is a reduction, we must show that the answer to the given instance
of DOMINATING SET is “Yes” if and only if the constructed instance of NA-REC has an associated
A′ that is fully navigable forW . Let us consider the two implications separately. If the answer
to the given instance of DOMINATING SET is “Yes”, then there is a dominating setV ′ such that
V ′ ≤ k. ConstructA′ from A by deleting the subsumption links from the topmost layer to all
|V ′| ≤ k = s vertex layers corresponding to vertices inV ′. These layers will now be active
whenever they detect squares corresponding to vertices inV ′ in the vertex blocks inW , which, by
the observations above, will allowA′ to navigate between any two freespaces inW . Conversely,
if there is anA′ that is fully navigable forW , A′ was constructed fromA by removing at mosts
subsumption links fromA; let V ′ be the set of vertices inG corresponding to the now-active vertex
layers inA′. By the construction ofW , each vertexv ∈ V is either inV ′ or is adjacent to a vertex
in V ′, implying thatV ′ is a dominating set of size at mosts = k in G.

Theorem 2 NA-DES isNP -hard

Proof (sketch): Follows by a slight variant of the reduction in Theorem 1 which deletesM and
setsf = 1. The proof of correctness of this reduction is identical to that for Theorem 1.

Result 1 NA-REC and NA-DES areNP -hard.

Proof: Follows from Theorems 1 and 2.

Corollary 1 NA-REC is fp-intractable for parameter-set{s, f, l, |M |}.

Proof: Follows from theW [2]-hardness of DOMINATING SET for parameter-set{k} and the re-
duction in Theorem 1, in whichs = k, f = 1, and|M | = l = 0.

Theorem 3 NA-REC is fp-intractable for parameter-set{s, f, l, |L|}.

Proof (sketch): Modify the reduction in Theorem 1 to letW be such that the bottom-side squares
in the vertex blocks are now the same as the top-side squares,i.e., eliminate the%-squares,A
consist of the lowest five layers and the topmost layer of the original A, M consist of the vertex-
layers from the originalA, s = 0, andl = k. The result then follows from theW [2]-hardness
of DOMINATING SET for parameter-set{k} and the reduction above from DOMINATING SET to
NA-REC in whichs = 0, f = 1, l = k, and|L| ≤ k + 6.
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Result 2 NA-REC is fp-intractable for parameter-sets{s, f, l, |M |} and{s, f, l, |L|}.

Proof: Follows from Corollary 1 and Theorem 3.

Lemma 1 Given an architectureA, a world W , and initial and final positionss andd with W ,
whether or notA can navigate froms to d can be computed inO(|W ||A|) time.

Proof: The action computed byA at a positionp in W can be determined inO(|A|) time. Observe
that the behavior ofA at p is fixed, in that regardless of whetherp has been encountered once or
more byA, the same action is generated. Hence, when started ats, if A doubles back on any
previously-entered square,A can never encounterd. As A can travel to at most|W | − 2 different
squares before enteringd. it can be determined in|W | moves whetherA can reachd from s.

Theorem 4 NA-REC is fp-tractable for parameter-set{|L|, |M |}.

Proof (sketch): The number of subsumption link-configurations ofA is a function of|L|, i.e.,
3|L|(|L|−1)/2. As s ≤ |L| andl ≤ |M |, the number of possibleA′ that can be generated fromA is
a function of|L| and |M |. To complete the proof, observe that each such configurationA′ of A
can be evaluated wrtW in polynomial time (as there are|W |(|W | − 1)/2 source-destination pairs
in W and the reachability for each pair can be determined inO(|A||W |) time by Lemma 1) and
checked to see ifA andA′ differ by at mosts subsumption-links inO(max(|A|, |A′|)) time.

Theorem 5 NA-REC is fp-tractable for parameter-set{|E|}.

Proof (sketch): Both |L| and|M | are bounded by the number of possible Boolean functions over
|E| times the number of possible actions a layer may generate,i.e., |L| ≤ 22|E|

× 4. Substituting
this |E|-expression for each occurrence of|L| and|M | in the runtime of the algorithm described
in Theorem 4 gives an algorithm for NA-REC that is fp-tractable for{|E|}.

Result 3 NA-REC is fp-tractable for parameter-set{|L|, |M |} and and{|E|}.

Proof: Follows from Theorems 4 and 5.

Result 4 NA-DES is fp-intractable for parameter-set{s, f, l, |L|}.

Proof (sketch): Modify the reduction in Theorem 3 to eliminateM and explicitly setf = 1.
The result then follows from theW [2]-hardness of DOMINATING SET for parameter-set{k} and
the reduction above from DOMINATING SET to NA-DES in whichs = 0, f = 1, l = 0, and
|L| ≤ k + 6.

Result 5 NA-DES is fp-tractable for parameter-set{|E|, f}.
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Proof (sketch): Consider the following algorithm: By comparison against all possible values of
theexists-predicates forE, possible layers overE that are not already part ofA can be isolated;
call this set of layersP . This setP can be further reduced to those layers that have trigger-condition
formulas of length at mostf overE; call this setP ′. Evaluate allA′ created by adding at mostl
layers fromP ′ to and modifying at mosts subsumption-links ofA to see if any are fully navigable
for W and output accordingly. To complete the proof, note that thenon-polynomial quantities in
the runtime of this algorithm (i.e., the number of possible layers overE (22|E|

× 4), the number of
possible values of theexists-predicates forE (2|E|), the number of trigger-condition formulas of
length at mostf (≤ f × |E|f )) are all functions of|E| andf .
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