
The Parameterized Complexity of Intersection
and Composition Operations on Sets of

Finite-State Automata

H. Todd Wareham

Department of Computer Science, Memorial University of Newfoundland,
St. John’s, NF, Canada A1B 3X5

harold@cs.mun.ca

Abstract. This paper uses parameterized complexity analysis to delimit
possible non-polynomial time algorithmic behaviors for the finite-state
acceptor intersection and finite-state transducer intersection and compo-
sition problems. One important result derived as part of these analyses
is the first proof of the NP -hardness of the finite-state transducer com-
position problem for both general and p-subsequential transducers.

1 Introduction

Certain applications of finite-state automata are most naturally stated in terms
of the intersection or composition of a set of automata [7,10]. One approach
to solving these problems is to use state Cartesian product constructions
[6, pp. 59-60] to build the automaton associated with the intersection or compo-
sition and then answer the query relative to a determinized and/or minimized
version of that automaton. Though such queries as emptiness or membership
can typically be answered in time and space linear in the size of the derived
automaton, the automaton may have O(|Q||A|) states, where |A| is the number
of automata in the set and |Q| is the maximum number of states in any automa-
ton in the set. This is to be expected, as many problems on sets of automata are
NP -hard and hence do not have polynomial-time algorithms unless P = NP .
However, are there other non-polynomial time algorithmic options for solving
such problems, e.g., an algorithm whose non-polynomial time complexity term is
purely a function of |Q| and |Σ|, where |Σ| is the size of the language-alphabet?
Knowledge of such options would be useful in practice for choosing the most
efficient algorithm in situations in which one or more of the characteristics of
the problem are of bounded value, e.g., |Q| ≤ 4 and |Σ| ≤ 26.

In this paper, techniques from the theory of parameterized computational
complexity [4] are used to determine part of the range of possible non-polynomial
time algorithmic behaviors for the finite-state acceptor intersection and finite-
state transducer intersection and composition problems. These analyses gener-
alize and simplify results given in [13]. One important result derived as part of
these analyses is the first proof of the NP -hardness of the finite-state transducer
composition problem for both general and p-subsequential transducers.

S. Yu and A. Păun (Eds.): CIAA 2000, LNCS 2088, pp. 302–310, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

The Parameterized Complexity of Intersection and Composition Operations 303

1.1 Terminology

A finite state acceptor (FSA) is a 5-tuple 〈Q, Σ, δ, s, F 〉 where Q is a set of
states, Σ is an alphabet, δ : Q × {Σ ∪ {ε}} × Q is a transition relation, s ∈ Q is
the start state, and F ⊆ Q is a set of final states. If δ has no entries of the form
(q, ε, q′) and is also a function, i.e., for each q ∈ Q and s ∈ Σ there is at most one
state q′ ∈ Q such that (q, s, q′) ∈ δ, the FSA is a deterministic finite-state
acceptor (DFA).

A finite state transducer (FST) is a 6-tuple 〈Q, Σi, Σo, δ, s, F 〉 where Q
is a set of states, Σi and Σo are the input and output alphabets, respectively,
δ : Q×Σ∗

i ×Σ∗
o ×Q is a transition relation, s ∈ Q is the start state, and F ⊆ Q

is a set of final states. There are several possible definitions of determinism for
FST; types of interest here are:

– i-Deterministic FST (sequential FST [11]): For each q ∈ Q and x ∈ Σ∗
i ,

there is at most one y ∈ Σ∗
o and q′ ∈ Q such that (q, x, y, q′) ∈ δ.

– i/o-Deterministic FST: For each q ∈ Q, x ∈ Σ∗
i and y ∈ Σ∗

o , there is at
most one q′ ∈ Q such that (q, x, y, q′) ∈ δ.

All FST in this paper are restricted to singleton labels that are ε-free, i.e.,
δ : Q × Σi × Σo × Q. Note that such FST will always produce output strings of
the same length as the input string, [7, Lemma 3.3].

2 Parameterized Complexity Analysis

The theory of NP -completeness [5] proposes a class NP of decision problems
that is conjectured to properly include the class P of decision problems that have
polynomial-time algorithms. For a given decision problem Π, if every problem in
NP reduces1 to Π, i.e., Π is NP -hard, then Π does not have a polynomial-time
algorithm unless P = NP .

It may still be possible to solve NP -hard problems by invok-
ing non-polynomial time algorithms that are effectively polynomial
time because their non-polynomial terms are purely functions of
sets of aspects of the problems that are of bounded size or value
in instances of those problems encountered in practice, where an
aspect of a problem is some (usually numerical) characteristic that can be
derived from instances of that problem, i.e., |Q|, |Σ|, and |A| in the case of
finite-state automaton intersection and composition problems. The theory of
parameterized computational complexity [4] provides explicit mechanisms for
analyzing the effects of both individual aspects and sets of aspects on problem
complexity.
1 Given decision problems Π and Π ′, Π reduces to Π ′, i.e., Π ≤m Π ′, if there is an

algorithm A that transforms an instance x of Π into an instance y of Π ′ such that
A runs in time polynomial in the size of x and x has a solution if and only if y has
a solution, i.e., x ∈ Π if and only if y ∈ Π ′.

304 H.T. Wareham

Definition 1. A parameterized problem Π ⊆ Σ∗ × Σ∗ has instances of the
form (x, y), where x is called the main part and y is called the parameter.

Definition 2. A parameterized problem Π is fixed-parameter tractable if
there exists an algorithm A to determine if instance (x, y) is in Π in time
f(y) · |x|α, where f : Σ+ 7→ N is an arbitrary function and α is a constant
independent of x and y.

Given a decision problem Π with a parameter p, let 〈p〉-Π denote the param-
eterized problem associated with Π that is based on parameter p and let 〈pc〉-
Π denote the subproblem of 〈p〉-Π in which p has value c for some constant
c ≥ 0. One can establish that a parameterized problem Π is not fixed-parameter
tractable by using a parametric reduction2 to show that Π is hard for any of the
classes of the W-hierarchy = {FPT, W [1], W [2], . . . , W [P], XP} except FPT ,
where FPT is the class of fixed-parameter tractable parameterized problems
(see [4] for details). These classes are related as follows:

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P] ⊆ · · · ⊆ XP

If a parameterized problem is C-hard for any class C in the W -hierarchy above
FPT then that problem is not fixed-parameter tractable unless FPT = C.

The following lemmas will be used in the analyses given in the next section.

Lemma 3. [16, Lemma 2.1.25] Given decision problems Π and Π ′ with
parameters p and p′, respectively, if Π ≤m Π ′ such that p′ = g(p) for an
arbitrary function g, then 〈p〉-Π parametrically reduces to 〈p′〉-Π ′.

Lemma 4. [16, Lemma 2.1.35] Given a set S of aspects of a decision problem
Π, if Π is NP -hard when the value of every aspect s ∈ S is fixed, then the
parameterized problem 〈S〉-Π is not in XP unless P = NP .

3 Results

The analyses in this section will focus on the following three problems:

Bounded DFA Intersection (BDFAI)
Instance: A set A of DFA over an alphabet Σ and a positive integer k.
Question: Is there a string x ∈ Σk that is accepted by each DFA in A?

i/o-deterministic FST Intersection (FST-I)
Instance: A set A of i/o-deterministic FST, all of whose input and output
alphabets are Σi and Σo, respectively, and a string u ∈ Σ+

i .
Question: Is there a string s ∈ Σ

|u|
o such that the string-pair u/s is accepted

by each FST in A?
2 Given parameterized problems Π and Π ′, Π parametrically reduces to Π ′ if

there is an algorithm A that transforms an instance (x, y) of Π into an instance
(x′, y′) of Π ′ such that A runs in time f(y)|x|α time for an arbitrary function f and
a constant α independent of both x and y, y′ = g(y) for some arbitrary function g,
and (x, y) ∈ Π if and only if (x′, y′) ∈ Π ′.

The Parameterized Complexity of Intersection and Composition Operations 305

i/o-deterministic FST Composition (FST-C)
Instance: A set A of i/o-deterministic FST, all of whose input and output
alphabets are Σ, a composition-order O on these FST, and a string u ∈ Σ+.
Question: Is there a sequence of strings {s0, s1, . . . , s|A|} with s0 = u and
si ∈ Σ|u| for 1 ≤ i ≤ |A| such that for the ordering {a1, a2, . . . , a|A|} of A under
O and 1 ≤ i ≤ |A|, si−1/si is accepted by ai?

The version of problem BDFAI in which x ∈ Σ∗ is PSPACE-complete [9] and
problem FST-I is NP -hard by a slight modification of the reduction given in
[2, Section 5.5.1]. All parameterized complexity analyses given in this section will
be done relative to the following aspects: the number of finite-state automata
in A (|A|), the required length of the result-string (k in the case of BDFAI,
|u| in the case of FST-I and FST-C), the maximum number of states of any
finite-state automaton in A (|Q|), and the size of the alphabet (|Σ| in the case
of BDFAI and FST-C, |Σi| and |Σo| in the case of FST-I).

3.1 Bounded DFA Intersection

Hardness results will be derived via reductions from the following problems:

Longest common subsequence (LCS) [5, Problem SR10]
Instance: A set of strings X = {x1,. . . , xk} over an alphabet Σ, an integer m.
Question: Is there a string y ∈ Σm that is a subsequence of xi for i = 1, . . . , k?

Dominating set [5, Problem GT2]
Instance: A graph G = (V, E), an integer k.
Question: Is there a set of vertices V ′ ⊆ V , |V ′| ≤ k, such that each vertex in
V is either in V ′ or adjacent to a vertex in V ′?

Note that all reductions below are phrased in terms of BDFAIR, the restricted
version of BDFAI in which k ≤ |Q|.
Lemma 5. LCS ≤m BDFAIR.

Proof. Given an instance 〈X, k, Σ, m〉 of LCS, construct the following instance
〈A′, Σ′, k′〉 of BDFAIR: Let Σ′ = Σ k′ = m, and A′ be created by applying to
each string x ∈ X the algorithm in [1] which produces a DFA on |x|+1 states that
recognizes all subsequences of a string x. Note that in the constructed instance
of BDFAIR, |A′| = k, k′ = m, and |Σ′| = |Σ|; moreover, k′ = m < |Q|. ut

Lemma 6. Dominating set ≤m BDFAIR.

Proof. Given an instance 〈G = (V, E), k〉 of Dominating set, construct the
following instance 〈A′, Σ′, k′〉 of BDFAIR: Let Σ′ = V be an alphabet such that
each vertex v ∈ V has a distinct corresponding symbol in Σ′, and let k′ = k.
For each v ∈ V , let adj(v) be the set of vertices in V that are adjacent to v
in G (including v itself) and nonadj(v) = V − adj(v). For each vertex v ∈ V ,
construct a two-state DFA Av = 〈{q1, q2}, Σ′, δ, q1, {q2}〉 with transition relation

306 H.T. Wareham

δ = {(q1, v
′, q1) | v′ ∈ nonadj(v)} ∪ {(q1, v

′, q2) | v′ ∈ adj(v)} ∪ {(q2, v
′, q2) |

v′ ∈ V }. Let A′ be the set consisting of all DFA Av corresponding to vertices
v ∈ V plus the k + 1 state DFA that recognizes all strings in Σ′k. Note that
in the constructed instance of BDFAIR, |A′| = |Σ′| + 1 = |V | + 1, k′ = k, and
|Q| = k + 1; moreover, k′ = k ≤ |V | and k′ = k < |Q|. ut

Lemma 7. BDFAIR ≤m BDFAIR such that |Σ| = 2.

Proof. Given an instance 〈A, Σ, k〉 of BDFAIR, construct the following instance
〈A′, Σ′, k′〉 of BDFAIR: Let Σ′ = {0, 1} and assign each symbol in Σ a binary
codeword of fixed length ` = dlog |Σ|e. For each DFA a ∈ A, create a DFA a′ ∈ A′

by adjusting Q and δ such that each state q and its outgoing transitions in a is
replaced with a “decoding tree” on 2` − 1 states in a′ that uses ` bits to connect
q to the appropriate states. Finally, let k′ = k`. Note that in the constructed
instance of BDFAIR, |A′| = |A| and |Σ′| = 2; moreover, as (|Q| + 1)(|Σ| − 1) ≤
|Q′| and k ≤ |Q|, k′ = k` ≤ |Q|dlog |Σ|e ≤ (|Q| + 1)(|Σ| − 1) ≤ |Q′|. ut

Theorem 8.
1. BDFAIR is NP -hard when |Σ| = 2.
2. 〈k, |Σ|〉-BDFAIR is in FPT .
3. 〈|A|, |Q|〉-BDFAIR is in FPT .
4. 〈|Q|, |Σ|〉-BDFAIR is in FPT .
5. 〈|A|, k〉-BDFAIR is W [1]-hard.
6. 〈k, |Q|〉-BDFAIR is W [2]-hard.
7. 〈|A|, |Σ|2〉-BDFAIR is W [t]-hard for all t ≥ 1.
8. 〈|Σ|〉-BDFAIR 6∈ XP unless P = NP .

Proof of (1): Follows from the NP -hardness of LCS [5, Problem SR10], the
reduction in Lemma 5 from LCS to BDFAIR, and the reduction in Lemma 7
from BDFAIR to BDFAIR in which |Σ| = 2.
Proof of (2): Follows from the algorithm that generates all |Σ|k possible k-length
strings over alphabet Σ and checks each string in O(|A|k) time to see whether
that string is accepted by each of the DFA in A. The algorithm as a whole runs
in O(|Σ|kk|A|) time, which is fixed-parameter tractable relative to k and |Σ|.
Proof of (3): Follows from the algorithm that constructs the intersection DFA
of all DFA in A and the k + 1-state DFA that recognizes all strings in Σk,
and then applies depth-first search to the transition diagram for this inter-
section DFA to determine if any of its final states are reachable from its
start state. The intersection DFA can be created in O(|Q||A|+1(k + 1)|Σ|2) =
O(|Q||A|+12k|Σ|2) = O(|Q||A|+1k|Σ|2) time. As the graph G = (V, E) associ-
ated with the transition diagram of this DFA has |V | ≤ (k + 1)|Q||A| ≤ 2k|Q||A|

states and |A| ≤ (k + 1)|Q||A||Σ| ≤ 2k|Q||A||Σ| arcs and depth-first search runs
in O(|V | + |A|) time, the algorithm as a whole runs in O(|Q||A|+1k|Σ|2) time,
which is fixed-parameter tractable relative to |A| and |Q|.
Proof of (4): This result follows from the observation that there are at most
|Q||Σ||Q| × 2|Q| ≤ |Q|2|Σ||Q| i/o-deterministic FST for any choice of |Q| and

The Parameterized Complexity of Intersection and Composition Operations 307

|Σ|. Hence, the number of different FST in any set A is at most |Q|2|Σ||Q|+1.
This suggests the algorithm that removes all redundant FST in A and then per-
forms the algorithm given in part (3) above. The first step involves checking
the isomorphism of the transition diagrams of all FST in A, where each tran-
sition diagram has at most |Q| vertices and at most |Q|2|Σ| edges, which can
be done in O(((|A|(|A|−1)/2)|Q||Q||Q|2|Σ|) = O((|A|2|Q||Q|+2|Σ|) time. Hence,
the algorithm as a whole runs in O(|Q|(|Q|2|Σ||Q|)+1k|Σ2||A|2) time, which is
fixed-parameter tractable relative to |Q| and |Σ|.
Proof of (5): Follows from the W [1]-completeness of 〈k, m〉-LCS [3], the reduction
in Lemma 5 from LCS to BDFAIR in which |A′| = k and k′ = m, and Lemma 3.
Proof of (6): Follows from the W [2]-completeness of 〈k〉-Dominating set [4],
the reduction in Lemma 6 from Dominating set to BDFAIR in which k′ = k
and |Q| = k + 1, and Lemma 3.
Proof of (7): Follows from the W [t]-hardness of 〈k〉-LCS for t ≥ 1 [3], the
reduction in Lemma 5 from LCS to BDFAIR in which |A′| = k, the reduc-
tion in Lemma 7 from BDFAIR to BDFAIR in which |A′| = |A| and |Σ′| = 2,
and Lemma 3.
Proof of (8): Follow from (1) and Lemma 4. ut
As BDFAIR is a restriction of BDFAI, all hardness results above also hold for
BDFAI. However, as the value of k is not necessarily bounded by a polynomial
in the instance size in BDFAI, the algorithm for part (4) only works (and hence
results (4) and (5) only hold) for BDFAI if k is also included in the parameter.

3.2 i/o-Deterministic FST Intersection

Lemma 9. BDFAIR ≤m FST-I.

Proof. Given an instance 〈A, Σ, k〉 of BDFAIR, construct the following instance
〈A′, Σ′

i, Σ
′
o, u

′〉 of FST-I: Let Σ′
i = {∆} for some symbol ∆ 6∈ Σ, Σ′

o = Σ and
u′ = ∆k. Given a DFA a = 〈Q, Σ, δ, s, F 〉, let FSTu(a) = 〈Q, Σ′

i, Σ, δF , s, F 〉
be the FST such that δF = {(q, ∆, x, q′) | (q, x, q′) ∈ δ} and let A′ be the set
consisting of all FST FSTu(a) corresponding to DFA a ∈ A. Note that in the
constructed instance of FST-I, |A′| = |A|, |u′| = k, |Q′| = |Q|, |Σ′

u| = 1, and
|Σ′

s| = |Σ|. ut

Theorem 10.
1. FST-I is NP -hard when |Σi| = 1 and |Σo| = 2 and when |Q| = 4 and

|Σo| = 3.
2. 〈|u|, |Σo|〉-FST-I, 〈|A|, |Q|〉-FST-I, and 〈|Q|, |Σ|〉-FST-I are in FPT .
3. 〈|A|, |u|, |Σi|1〉-FST-I is W [1]-hard.
4. 〈|u|, |Q|, |Σi|1〉-FST-I is W [2]-hard.
5. 〈|A|, |Σi|1, |Σo|2〉-FST-I is W [t]-hard for all t ≥ 1.
6. 〈|Σo|, |Σi|〉-FST-I and 〈|Q|, |Σo|〉-FST-I are not in XP unless P = NP .

Proof. (Sketch) Almost all results follow by arguments similar to those in
Theorem 8 relative to the reduction in Lemma 9 and the appropriate results
in Theorem 8. The NP -hardness of FST-I when |Q| = 4 and |Σo| = 3 follows
from the reduction in [2, Section 5.5.3]. ut

308 H.T. Wareham

3.3 i/o-Deterministic FST Composition

The following reduction formalizes the observation (made independently by
Karttunen [8]) that FSA intersection can be simulated by the composition of
identity-relation FST.

Lemma 11. BDFAIR ≤m FST-C.

Proof. Given an instance 〈A, Σ, k〉 of BDFAIR, construct the following instance
〈A′, O′, Σ′, u′, 〉 of FST-C: Let Σ′ = Σ ∪ {∆} for some symbol ∆ 6∈ Σ, and
u′ = ∆k. Given a DFA a = 〈Q, Σ, δ, s, F 〉, let FSTu(a) = 〈Q, Σ, Σ, δF , s, F 〉
be the FST such that δF = {(q, x, x, q′) | (q, x, q′) ∈ δ}. Let A′ be the set
consisting of all FST FSTu(a) corresponding to DFA a ∈ A plus the special
FST FSTinit = 〈{q1}, {∆}, Σ, δ, q1, {q1}〉 for which δ = {(q1, ∆, x, q′) | x ∈ Σ},
and let O′ be an ordering on A′ such that FSTinit is the first FST in O and the
other FST appear in an arbitrary order. Note that in the constructed instance of
FST-C, |A′| = |A|+1, |u′| = k, |Q′| = max(|Q|, 1) = |Q|, and |Σ′| = |Σ|+1. ut

Theorem 12.
1. FST-C is NP -hard when |Σ| = 3.
2. 〈|u|, |Σ|〉-FST-C and 〈|A|, |Q|〉-FST-C are in FPT .
3. 〈|A|, |u|〉-FST-C is W [1]-hard.
4. 〈|u|, |Q|〉-FST-C is W [2]-hard.
5. 〈|A|, |Σ|3〉-FST-C is W [t]-hard for all t ≥ 1.
6. 〈|Σ|〉-FST-C is not in XP unless P = NP .

Proof. (Sketch) Almost all results follow by arguments similar to those in
Theorem 8 relative to the reduction in Lemma 11 and the appropriate results
in Theorem 8. The fixed-parameter tractability of 〈|u|, |Σ|〉-FST-C follows by
a variant of an algorithm in [13, Theorem 4.3.3, Part (3)] that uses an |Σ||u|-
length bit-vector to store the intermediate sets of strings produced during the
FST composition. ut

4 Discussion

All parameterized complexity results for problems BDFAI, FST-I, and FST-C
that are either stated or implicit in the previous section are shown in Tables 1
and 2. Recall that results for problems FST-I and FST-C are stated relative to
restricted FST; hence, only hardness results necessarily hold for these problems
relative to general FST, and given FPT algorithms are at best outlines for
possible FPT algorithms for general FST (see [13, Sections 4.3.3 and 4.4.3]
for further discussion). Future research should both look for algorithms that
exploit the sets of aspects underlying the state Cartesian product (|A|, |Q|) and
exhaustive string generation (|u|, |Σ|) constructions) in new ways and consider
other aspects of finite-state automaton intersection and composition problems,
such as characterizations of logic formulas describing the automata [12].

The Parameterized Complexity of Intersection and Composition Operations 309

Table 1. The Parameterized Complexity of the Bounded DFA Intersection
and i/o-deterministic FST Composition Problems. (a) The Bounded DFA
Intersection Problem. (b) The i/o-deterministic FST Composition Problem.

(a) (b)

Alphabet Size |Σ|
Parameter Unbounded Parameter

– NP -hard 6∈ XP
unless P = NP

|A| W [t]-hard W [t]-hard
k W [2]-hard FPT

|Q| W [2]-hard ???
|A|, k W [1]-hard FPT

|A|, |Q| ??? ???
k, |Q| W [2]-hard FPT

|A|, k, |Q| FPT FPT

Alphabet Size |Σ|
Parameter Unbounded Parameter

– NP -hard 6∈ XP
unless P = NP

|A| W [t]-hard W [t]-hard
|u| W [2]-hard FPT

|Q| W [2]-hard ???
|A|, |u| W [1]-hard FPT

|A|, |Q| FPT FPT

|u|, |Q| W [2]-hard FPT

|A|, |u| |Q| FPT FPT

Table 2. The Parameterized Complexity of the i/o-deterministic FST
Intersection Problem.

Alphabet Sizes (|Σi|,|Σo|)
Parameter (Unb,Unb) (Unb,Prm) (Prm,Unb) (Prm,Prm)

– NP -hard 6∈ XP 6∈ XP 6∈ XP
unless P = NP unless P = NP unless P = NP

|A| W [t]-hard W [t]-hard W [t]-hard W [t]-hard
|u| W [2]-hard FPT W [2]-hard FPT

|Q| W [2]-hard 6∈ XP W [2]-hard FPT
unless P = NP

|A|, |u| W [1]-hard FPT W [1]-hard FPT

|A|, |Q| FPT FPT FPT FPT

|u|, |Q| W [2]-hard FPT W [2]-hard FPT

|A|, |u|, |Q| FPT FPT FPT FPT

One such aspect of great interest is FST ambiguity (essentially, the maximum
number of strings associated with any input string by a FST). Problems FST-I
and FST-C are solvable in low-order polynomial time when they are restricted
to operate on sequential FST, i.e., FST that associate at most one output string
with any input string. The reduction in Lemma 11 suggests that the presence
of only one i/o-deterministic FST can make FST composition NP -hard. What
about more restricted classes of FST? One candidate is the p-subsequential
FST [11], which are essentially sequential FST which are allowed to append
any one of a fixed set of p strings to their output. Such FST seem adequate for
efficiently representing the ambiguity present in many applications [11]. However,
the following result suggests that this observed efficiency is not universal.

Theorem 13. 2-subsequential FST composition is NP -hard.

310 H.T. Wareham

Proof. (Sketch) Given instances of BDFAIR created in Lemma 7, the reduction in
Lemma 11 can be modified by setting u′ = ∆ and replacing the i/o-deterministic
FST FSTinit with a set of |u| 2-sequential FST that echo their input and append
a 0 or a 1 (that is, a set of 2-subsequential FST whose composition generates all
possible strings of length |u| over the alphabet {0, 1}). ut

Acknowledgments. The author would like to thank the CIAA referees for
various helpful suggestions, and for pointing out several errors in the original
manuscript as well as solutions for some of these errors.

References

1. R.A. Baeza-Yates. 1991. Searching Subsequences. Theoretical Computer Science,
78, 363–376.

2. G.E. Barton, R.C. Berwick, and E.S. Ristad. 1987. Computational Complexity and
Natural Language. MIT Press, Cambridge, MA.

3. H.L. Bodlaender, R.G. Downey, M.R. Fellows, and H.T. Wareham. 1995.
The Parameterized Complexity of Sequence Alignment and Consensus.
Theoretical Computer Science, 147(1–2), 31–54.

4. R.G. Downey and M.R. Fellows. 1999. Parameterized Complexity. Springer-Verlag,
Berlin.

5. M.R. Garey and D.S. Johnson. 1979. Computers and Intractability: A Guide to
the Theory of NP -Completeness. W. H. Freeman and Company, San Francisco.

6. J.E. Hopcroft and J.D. Ullman. 1979. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Reading, MA.

7. R.M. Kaplan and M. Kay. 1994. Regular Models of Phonological Rule Systems.
Computational Linguistics, 20(3), 331–378.

8. L. Karttunen. 1998. The Proper Treatment of Optimality in Computational
Phonology. Technical Report ROA-258-0498, Rutgers Optimality Archive.

9. D. Kozen. 1977. Lower Bounds for Natural Proof Systems. In 18th IEEE
Symposium on Foundations of Computer Science, pp. 254-266. IEEE Press.

10. R.P. Kurshan. 1994. Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approach. Princeton University Press.

11. M. Mohri. 1997. On the Use of Sequential Transducers in Natural Language
Processing. In E. Roche and Y. Schabes, eds., Finite-State Language Processing,
pp. 355–382. MIT Press, Cambridge, MA.

12. H. Straubing. 1994. Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, Boston, MA.

13. H.T. Wareham. 1999. Systematic Parameterized Complexity Analysis in Compu-
tational Phonology. Ph.D. thesis, Department of Computer Science, University of
Victoria. Technical Report ROA-318-0599, Rutgers Optimality Archive.

	Introduction
	Terminology

	Parameterized Complexity Analysis
	Results
	Bounded DFA Intersection
	i/o-Deterministic FST Intersection
	i/o-Deterministic FST Composition

	Discussion

