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1. INTRODUCTION

The field of parameterized algorithms continues to grow. It is a

sign of its success that in the literature today there exists over

20 differently named techniques for designing parameterized

algorithms.1 Many parameterized algorithms build on the

same ideas, and as a problem solver it is important to be fami-

liar with these general themes and ideas. Aside from several

survey articles [6, 9], there have been at least two comprehen-

sive texts written on parameterized algorithm design: Downey

and Fellows’s seminal book ‘Parameterized Complexity’ [1]

and the more recent ‘Invitation to Fixed-Parameter Algori-

thms’ [2] by Niedermeier. The first of these books came

very early in the history of parameterized complexity, and

does therefore not include newer ideas. The second book is

dedicated to algorithmic techniques, and singles out bounded

search trees and kernelization as the two major ones, while

the generic heading ‘Further Algorithmic Techniques’ is

devoted to integer linear programming, color coding,

dynamic programming and tree decompositions.

In this paper, we survey what we consider to be the nine

most important general techniques, namely: bounded search

trees, greedy localization, color coding, local reductions,

global reductions (crown reductions), iterative compression,

extremal method, well-quasi-ordering (graph minors) and

imposing fixed-parameter tractable (FPT) structure (tree-

width). We classify these techniques under the four main

themes of branching, kernelization, induction and win/win

(see Fig. 1). In addition to its pedagogic value, we believe

that such a taxonomy could help in developing both new tech-

niques and new combinations of known techniques. The four

main themes are described in separate sections. Each tech-

nique is introduced with a meta-algorithm, examples of its

use are given, and we end with a brief discussion of its practi-

cality. Regarding practicality, let us right away remark that in

our opinion the most important decision is the choice of para-

meter. However, this issue is orthogonal to the algorithmic

technique used and will thus not be discussed here.

Some aspects of this classification are novel, for example,

the grouping of greedy localization and color coding together

with bounded search trees under the heading of Branching

algorithms, and the placement of the extremal method as the

maximization counterpart of iterative compression under the

heading of induction. We give a generic and formal descrip-

tion of greedy localization that encompasses problems hitherto

not known to be FPT solvable by this technique. Sometimes a

technique is known under different names2 or it is a variant of

a more general technique.3 Clearly, the fastest FPT algorithm

for a problem will usually combine several techniques. In

some cases such a combination has itself been given a separate

name.4 We do not consider all these variations of the most

1This includes bounded search trees [1], data reduction [2], kernelization

[1], The extremal method [3], The algorithmic method [4], catalytic vertices

[3], crown reductions [5], modeled crown reductions [6], either/or [7],

reduction to independent set structure [8], greedy localization [6], win/win

[9], iterative compression [6], Well-Quasi-Ordering [1], FPT through tree-

width [1], Search Trees [2], bounded integer linear programming [2], color

coding [10], method of testsets [1], interleaving [11].

2This is the case with data reduction ¼ local reduction rules, either/or ¼

win/win, search trees ¼ bounded search trees and other names like Hashing

[1] ¼ color coding, which do not seem to be in use anymore.
3This is the case with catalytic vertices # local reduction rules, the algo-

rithmic method # extremal method, modelled crown reductions # crown

reductions, FPT by treewidth # imposing FPT structure, reduction to indepen-

dent set structure # imposing FPT structure, method of testsets # imposing

FPT structure.
4This is the case with interleaving, which combines bounded search trees

and local reduction rules. The technique known as bounded integer linear
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general techniques, and our discussion is restricted to the first

two levels of the hierarchy in Fig. 1.

A note on notation: the chosen parameter for a problem is

usually not stated explicitly, instead we use the convention

that the variable name k always denotes the parameter. We

use standard notation for graphs and focus on graph problems,

particularly the following handful of quite famous ones:

k-vertex cover (are there k vertices incident to all edges?),

k-dominating set (are there k vertices adjacent to all

vertices?), k-independent set (are there k pairwise non-

adjacent vertices?), k-feedback vertex set (are there k vertices

whose removal gives an acyclic graph?) and k-packing of H

(are there k vertex disjoint copies of H?). All these problems

are NP-hard, and our goal is an FPT algorithm, meaning that

on input (G, k) for a graph G on n vertices it solves the

problem in time f(k)nO(1). Using the O* notation that hides

not only constants but also polynomial dependencies this

runtime is simply expressed as O* (f(k)).

2. BRANCHING ALGORITHMS

We start by considering algorithm techniques that use a

branching strategy to create a set of subproblems such that

at least one of the subproblems is a yesinstance if and only

if the original problem is a yes-instance. Techniques that

create branching algorithms are bounded search trees,

greedy localization and color coding. For a branching algori-

thm to have FPT running time it suffices to require that

† each node in the execution tree has polynomial running

time;

† there are O((log n)g(k)f(k)) branches at each step; and

† it reaches a polynomial time base case in at most h(k)

nested calls.

The running time of an algorithm that uses branching is

bounded by the number of nodes of the execution tree times

the running time for each node. Since we assume polynomial

running time at each node in the execution tree, only the size

of the tree contributes in O*-notation. It is normal that an

algorithm checks for several different branching rules and

branches according to one of the cases that applies. Although

branching algorithms can have many branching rules it is

usually straightforward to calculate the worst case. For the

functions given above, the execution tree will have O(((log

n)g(k)f(k))h(k)) nodes. To show that this is an FPT-function

we prove the following.

OBSERVATION 1. There exists a function f(k) such that

(log n)k
� f (k) n for all n and k.

Proof. First recall that a logarithmic function grows slower

than any rootfunction. That is, log n ¼ o(n1/k) 8k, which

implies that

8k � 19n0 � 1 such that 8n � n0 log n , n1=k:

Thus there must be a function h(k): N! Nþ such that

8k8n � h(k) we have logn , n1/k and 8k 8n � h(k) we have

(log n)k , n.

So now the situation is that for all n . h(k) we have that (log

n)k , n and the theorem holds. If on the other hand n � h(k),

then log n � logh(k) and (log n)k
� (log h(k))k. We thus have

(log n)k
� maxf1, (log h(k))k

g . n. A

It is easy to extend this to show that O((log n)g(k)) is also an

FPT-function.

2.1. Bounded search trees

The method of bounded search trees is arguably the most

common and successful parameterized algorithm design tech-

nique. We can define it as a branching algorithm which is

strictly recursive. A branching rule Bi identifies a certain struc-

ture in the graph (that we may call the left-hand side LHSi)

and creates c [ O((log n)g(k)f(k)) new instances (G1, k1),

(G2, k2), . . . , (Gc, kci
) such that the instance (G, k) is a ‘Yes’-

instance if and only if at least one instance (Gj, kj), 1 � j � kci

is a ‘Yes’-instance. See the meta-algorithm given in Fig. 2.

FIGURE 1: The first two levels of the taxonomy, labelled by section number.

programming can in a similar way be viewed as a combination of a branching

algorithm with local reduction rules.
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2.1.1. Example: k-independent set and k-vertex cover

We present two simple examples of bounded search tree

algorithms.: an O*(6k) algorithm for k-independent set in

a planar graph and an O*(1.466k) algorithm for k-vertex

cover.

OBSERVATION 2. k-independent set can for a planar graph

G be solved by a BST algorithm in time O*(6k).

Proof. In an instance (G, k) of k-independent set we know that

for any maximal independent set S#V (G) and for any v [
V (G) it is true that N[v] > S ¼1. If this was not the case,

we could include v to obtain a larger set, contradicting maxi-

mality. This together with the well-known fact that any planar

graph contains a vertex v of degree at most five, allows us to

continually branch on such a low-degree vertex v selecting

either v or one of its neighbors to be in the indpendent set.

When selecting a vertex for the independent set we remove

it and all its neighbors from the graph and lower the parameter

by one. This leaves us with at most six smaller instances, each

with parameter k0 ¼ k 2 1. As the problem is trivial when the

parameter is zero, the size of the tree T(k) is bounded by

6.T(k 2 1). This recurrence relation resolves to T(k) � 6k

(Fig. 3). A

OBSERVATION 3. k-vertex cover can be solved by a BST

algorithm in time O*(1.466k).

Proof. To prove this we make two initial observations. First,

that any valid vertex cover must contain either a vertex v or

all its neighbors N(v). Second, if a graph has only vertices of

degree two or less, then k-vertex cover is linear time solvable.

The second observation gives us a clear goal: we will try to

reach a linear time instance by branching on any vertex of

degree higher than two. We can do this as each high-degree

vertex v creates only two branches, where one branch

decreases the parameter by one and the other decreases the

parameter by jN(v)j (three or more). The recursive function

T(k) � T(k 2 1) þ T(k 2 3) gives a bound on the size of the

tree. This recursive function can be solved by finding the

largest root of its characteristic polynomial lk ¼ lk21
þ

lk23. Using standard computer tools, this root can be esti-

mated to 1.466, giving the desired result. A

2.1.2. How is it used in practice?

This is arguably the most successful parameterized algorithm

design technique. The powerful k-vertex cover algorithm by

Chen, et al. [12], running in time O (1.286kn), is a bounded

search tree algorithm and remains one of the most cited

results in the field.

Also for practical implementations bounded search tree

algorithms remain one of the best design techniques, achieving

very good running times (M. Langston, Personal Communi-

cation). However, we would like to note that the effectiveness

of a practical implementation of a bounded search tree algori-

thm may be dependent on the number of cases then the algori-

thm attempts. If the algorithm checks for just a handful of

cases, then the running time of the algorithm is usually low,

and its implementation feasible. However, there are cases in

the literature where the number of cases reach the tens of thou-

sands [13]. Although this allows for very good theoretical per-

formance the unavoidable overhead will slow down any

practical implementation. Some very good implementations

of the vertex cover algorithm deliberately skip some of the

more advanced cases as they in most practical instances

only slow the algorithm down, as reported in (M. Langston,

Personal Communication).

FIGURE 3: Illustrating observations 2 and 3

A graph G with vertex a having 3 neighbors, and two levels of the

bounded search trees for k-independent set in planar graphs and for

k-vertex cover. Any maximal independent set will contain either

vertex a or at least one of its neighbors, while any vertex cover

will contain either vertex a or all three neighbors.

FIGURE 2: A meta-algorithm for bounded search tree.
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2.2. Greedy localization

Greedy localization is a technique that uses a clever first

branching to start off the recursive search for the solution. It

was introduced in [14, 15] and popularized in an IWPEC’04

paper [6]. Our aim is to show that if a parameterized

problem satisfies the following conditions then greedy

localization will give an FPT algorithm.

(1) The problem can be formulated as that of finding k pair-

wise non- overlapping ‘objects’ in an input instance G,

with objects being special subsets of size depending

only on k of a ground set W of G.

(2) For any R#W and X#W we can decide in FPT time if

there exists S#W \ X such that S < R is an object.

Not all bounded-size subsets of W are objects, and an

obvious requirement for the problem to have an FPT algorithm

is that for any R#W we must be able to decide in FPT time if R

is an object or not. Condition 2 can be seen as a strengthening

of this obvious requirement and we will refer to S as an

‘extension’ of the ‘partial object’ R to a ‘full object’ R < S

avoiding X.

Figure 4 gives the greedy localization algorithm, in nonde-

terministic style, for a problem satisfying these two con-

ditions. It uses the notation that for a set of partial objects

B ¼ fB1, B2 , . . . , Bkg the ground elements contained in B are

denoted by WB ¼ >Bi[BBi.

THEOREM 1. If a parameterized problem satisfies conditions

1 and 2 above then the algorithm ‘greedy localization’ is an

FPT algorithm for this problem.

Proof. The algorithm starts by computing an inclusion

maximal non-overlapping set of objects A. By condition 2

this first step can be done in FPT time as follows: repeatedly

extend the emptyset to a full object while avoiding a set X,

by calling subroutine EXTEND(1, X) with X initially

empty, and adding the extension to X before the next iteration.

When no extension exists we are assured that the sequence of

extensions found must be an inclusion maximal non-

overlapping set of objects A.

FIGURE 4: A meta-algorithm for greedy localization, in non-deterministic style.
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The crucial aspect that makes the algorithm correct is that if

A and B are two inclusion maximal non-overlapping sets of

objects then for any object Bi in B there is an object Aj in A

such that Aj and Bi overlap, since otherwise A is not

maximal. Thus, if the instance contains such a set B of at

least k objects, then we can guess k ground elements appearing

in A, with A constructed in the first step of the algorithm, such

that these ground elements belong to k separate objects of B.

The branching subroutine is called on these k one-element

partial objects and we greedily try to extend them to full

objects. If this fails for some object Bj, after having added

extension elements F to objects B1, B2, . . . , Bj21, then there

must exist an element v from F that should have instead

been used to extend Bj. We then simply guess the element v

and try again.

For a deterministic algorithm, the guesses are replaced by

branchings, and we give a No answer iff all branches answer

No. The first branching is of size
jWAj

k

� �
, the remainder of

the branches are of size jFj, and the total height of the tree

is bounded by k times the maximum size of an object since

at each level one new ground element is added to WB. All

these are bounded by a function depending on k as we

assumed in condition 1 that each object had size depending

on k only. The calls to the extend subroutine are FPT by con-

dition 2. Hence the algorithm is FPT. A

2.2.1. Example: k-packing of k-cycles

Using Theorem 1, we can easily argue that deciding if a graph

G contains k vertex-disjoint cycles on k vertices is FPT by

greedy localization. The ground set W will be the vertex set

of G and the objects will be subsets of k vertices inducing a

subgraph containing a k-cycle, to satisfy condition 1. Given

R, X#W we can by an FPT algorithm designed using the

Color Coding technique, see the next section, decide if there

exists S#W \ X such that R < S induces a subgraph containing

a k-cycle, to satisfy condition 2. By Theorem 1 the greedy

localization meta-algorithm therefore solves the problem in

FPT time. For packing of edge-disjoint cycles, a similar argu-

ment holds with W being the edge set of the graph.

2.2.2. How is it used in practice?

Since we do not know of any practical implementation of this

technique we simply give our opinion on the practical useful-

ness of this design technique. Observe that the running time of

this algorithm depends on the running time of the EXTEND

subroutine and the maximum size of the objects. The size of

objects determine the size of our branching tree and also the

number of times the EXTEND subroutine is executed. This,

together with the inherent running time of O*(ck log k), lead

us to believe that greedy localization is impractical for

anything but small constant sized objects.

2.3. Color coding

Color coding is a technique that was introduced by Alon et al.

in their paper ‘color coding’ [10] and is characterized by a

powerful first branching step. For example, given an input to

a parameterized graph problem we may in a first branching

color the vertices with k colors such that the structure we are

looking for will interact with the color classes in a specific

way. To do this we create many branches of colored graphs

using a family of perfect hash functions for the coloring.

DEFINITION 1. A k-perfect family of hash functions is a

family H of functions from f1, . . . , ng onto f1, . . . , kg

such that for each S , f1, . . . , ng with jSj ¼ k there exists an

h [ H that is bijective when restricted to S.

Schmidt and Siegal [16] describe a construction of a

k-perfect family of hash functions of size 2O(k)log2 n, and

[10] describes how to obtain an even smaller one of size

2O(k)log n.

The technique could for example apply a family of perfect

hash functions to partition vertices of the input graph into k

color classes. By the property of perfect hash families we

know that for any k-sized subset S of the vertices, one of the

hash functions in the family will color each vertex in S with

a different color. Thus, if we seek a k-set C with a specific

property (e.g. containing a k-cycle), we know that if there is

such a set C in the graph then its vertices will, for at least

one function in the hash family, be colored with each of the

k colors. See the meta-algorithm in Fig. 5. The color coding

technique gives an FPT algorithm whenever this colored sub-

problem can be solved in FPT time.

2.3.1. Example: k-cycle

To give a simple example of how to use color coding we give

an algorithm for the k-cycle problem, which asks if an input

graph has a cycle of length exactly k. This problem is

obviously NP-complete since it is equivalent to Hamiltonian

cycle for k ¼ n. Let us consider the ‘k-cycle algorithm’ in

Fig. 6.

OBSERVATION 4. The ‘k-cycle algorithm’ is correct and

runs in time O*(2O(k)k!).

Proof. Given an instance (G, k) we prove that the algorithm

outputs a k-cycle if and only if G contains a k-cycle.

In one direction the algorithm answers ‘Yes’ and outputs a

cycle. As the edges not deleted from the graph go from color-

class ci to ci þ 1(mod k), the shortest cycle in the graph is of

length k and since the breadth first search only test for

lengths up to k, we will not find cycles longer than k. Thus,

if the algorithm outputs a cycle, it must be of length k.

For the other direction, assume in contradiction that G has a

k-cycle S ¼ ks1, s2, . . . , sk, s1l, while the algorithm produces

a ‘No’ answer. Since F is a perfect hash family, there exists

a function f [ F such that the vertices fs1, s2, . . . , skg all
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received different colors when f was used as the coloring func-

tion. Since the algorithm tries every possible ordering of the

color classes, it will try kf(s1), f(s2), . . . , f(sk)l. Under this

ordering, none of the edges in the cycle S will be removed,

and since we test every vertex of one color class f(si), we

will at some point test if there exists a cycle from si to itself

and output a ‘Yes’-answer, contradicting the assumption.

To calculate the running time, we know by Alon et al. [10]

that we have a perfect hash family of size 2O(k) log n. Thus, the

result follows as the number of orderings of the k color classes

is k!, and the rest is a polynomial factor. A

Note that instead of investigating each possible ordering of

the color classes in order to find a cycle we could use a

dynamic programming strategy. This would improve the

running time, but we have chosen this simpler version because

we wish to emphasize the color coding part of the algorithm.

2.3.2. How is it used in practice?

Perhaps the strongest theoretical results using color coding are

obtained in [17] where it is combined with kernelization to

give FPT algorithms for a large variety of packing problems.

In general, a major drawback of these algorithms is that

FIGURE 6: An algorithm for the k-cycle problem.

FIGURE 5: A meta-algorithm for ‘color coding’.
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while the hash family has an asymptotically good size, the

O-notation hides a large constant. Thus, from a practical view-

point the color coding algorithms would for reasonable input

sizes normally be slower than a 2k log k algorithm obtained

through other techniques. We believe that this algorithm

design technique is unsuitable in practice.

3. KERNELIZATION

Under the heading of kernelization, we combine techniques

that reduce a general instance into an equivalent kernel, i.e.

an instance whose total size is bounded by a function depend-

ing only on the parameter. We distinguish between local

reductions and global reductions.

3.1. Local reductions

The main tool to facilitate the reduction is the reduction

rule. Each reduction rule identifies a certain structure

LHS (the left-hand side) in the instance and modifies it

to RHS (the right-hand side), possibly by deletion

(RHS ¼1). This must be done in such a way that the

original instance (G, k) has a positive solution iff the

reduced instance (G0, k0) has one. The identified structure

and resulting change is usually of a fixed size, and we

then call it a local reduction rule.

If a reduction rule A cannot be applied to an instance we

say that the instance is irreducible for A. That an instance

is irreducible implies that it does not have the structure

the reduction rule applies to. In this way, we can use reduc-

tion rules to remove a certain structure from an instance.

This allows us to shed away trivial and/or polynomial solva-

ble parts of an instance, thus revealing the combinatorial

hard core.

Normally, a single reduction rule is not sufficient to reduce a

problem to a kernel. We usually require a set of reduction

rules, where each rule in the set removes one type of proble-

matic structure. If a set of reduction rules is sufficient to

reduce any instance of a problem to a kernel we call it a com-

plete set of reduction rules. Given such a set we can devise a

simple algorithm as seen in Fig. 7.

3.1.1. Example: k-vertex cover and k-dominating set

Here we will give the classical example of a quadratic kerne-

lization algorithm for vertex cover. It is by far the simplest

algorithm using reduction rules known to us and illustrates

the technique very well. We will make use of a reduction

rule applicable to vertices of degree larger than k [1]. It is

easily seen to be true and says that

RULE 1. Assume v [ V (G) with deg(v) . k. Then G has a

vertex cover of k vertices if and only if G 2 v has a vertex

cover of k 2 1 vertices.

OBSERVATION 5. The singleton set containing Reduction

Rule 1 is a complete set of reduction rules for k-vertex cover

and will in linear time give a kernel of O(k2) vertices.

Proof. Let us examine the reduced graph G0 that remains after

we have deleted all vertices of degree more than k. This

instance G0 (with the parameter k0) has been obtained from

the input (G, k) by repeatedly applying Reduction Rule 1.

Thus by correctness of Reduction Rule 1, we know that G0

has a vertex cover of size k0 if and only if G has a vertex

cover of size k. Since the reduced graph G0 has vertices of

degree at most k, any vertex in V (G0) can cover at most k

edges. Thus the total number of edges a vertex cover of size

k0 can cover is at most k0.k, thus it is at this point safe to

reject any graph G0 with more edges than k0.k. It is easy to

see that the algorithm works in linear time. It simply scans

through the vertices and deletes the vertices of degree more

than k. A

For some problems obtaining a kernel is trivial. In the fol-

lowing example, we consider k-dominating sets in cubic

graphs, i.e. where all vertices have degree three. Thus no

vertex can dominate more than four vertices (itself and its

three neighbors) and we can safely answer No whenever the

input graph has more than 4k vertices. Note that we did not

apply any reduction rule at all to find this kernel of 4k vertices

and 12k edges. For many problems this would be a very good

result, but here it is terrible. By the same argument we see that

no cubic graph has a dominating set of size less than n/4. Thus,

for any non-trivial problem instance we have k � n/4 and thus

4k � n, and the bound 4k obtained from the kernel is larger

than the size of the instance itself. This shows that it is

FIGURE 7: A meta-algorithm for a complete set of reduction rules.
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important to be aware of the lower and upper bounds on inter-

esting instances of the problem one is working on. This can be

of great help in finding trivial kernels and estimating the

quality of a suggested kernel.

3.1.2. How is it used in practice?

The idea of pre-processing an input forms a heuristic for many

real-world problems. Kernelization is a sibling of this idea

where we have a guarantee on its effectiveness. It can can

be extremely useful in practical implementations as it allows

for a fast reduction of the input size. For many instances, the

reduction rules work much better than the worst case analysis

would indicate [18].

3.2. Global reduction rules—crown reduction

Lately there has been a focus on reduction rules that do not

follow the pattern of finding a local structure of constant

size. In this section we describe reduction rules based on

finding crown decompositions in graphs. (see Fig. 8).

DEFINITION 2. A crown decomposition of a graph G ¼

(V, E) is a partitioning of V into sets C,H,R, where C and H

are both non-empty, such that:

(1) C is an independent set.

(2) There is no edge between a vertex in C and a vertex in

R.

(3) There exists an injective map m: H! C, such that

m(a) ¼ b implies that ab is an edge. We call ab a

matched edge if m(a) ¼ b.

When using a crown decomposition (C, H, R) in a reduction

rule for a graph G we usually show that we can remove or

modify (C < H) to obtain a reduced instance (G0, k0) which

is a Yes-instance if and only if (G, k) is a Yes-instance. For

example, it is easy to see that G has a vertex cover of size k

iff the graph G0 resulting from removing C < H has a vertex

cover of size k 2 jHj. Usually, more complicated reduced

instances and arguments are necessary. For example, an FPT

algorithm for k-internal spanning tree [8] uses crown reduction

rules that remove only the vertices of C not incident to a

matched edge.

Although it is possible to determine if a graph has a crown

decomposition in polynomial time [19], this technique is often

combined with the following lemma by Chor et al. [5].

LEMMA 1. If a graph G ¼ (V, E) has an independent

set I such that jN(I)j , jIj, then a crown decomposition

(C,H,R) for G such that C#I can be found in time

O(jVj þ jEj).

The notation N(I) denotes vertices in V \ I that are adjacent

to a vertex in I. Since it is W[1]-hard to find a large indepen-

dent set we cannot directly apply Lemma 1. To see how the

lemma can be used, we consider k-vertex cover on a graph

G in the next section.

Although crown reduction rules were independently discov-

ered by Chor et al. [5] one should note that a similar type of

structure has been studied in the field of boolean satisfiability

problems (SAT). An autarky is a partial truth assignment

(assigning true/false to only a subset of the variables) such

that each clause that contains a variable determined by the

partial truth assignment is satisfied. In a matching autarky,

we require in addition that the clauses satisfied and the satisfy-

ing variables form a matching cover in the natural bipartite

graph description of the SAT. It is easy to see that the match-

ing autarky is a crown decomposition in this bipartite graph.

The main protagonist in this field is Kullmann [20, 21], who

has developed an extensive theory on different types of

autarkies.

3.2.1. Example: k-vertex cover

We have already remarked the following quite simple crown

reduction rule.

RULE 2. Given a crown decomposition (C,H,R) of a graph

G ¼ (V,E), then G has a vertex cover of size k if and only if

G0 ¼ G[V 2 (C < H)] has a vertex cover of size k0 ¼ k 2 jHj.

In Fig. 9, this rule is applied to k-vertex cover with a simple

win/win argument.

OBSERVATION 6. The algorithm crown kernelization in

Fig. 9 either terminates with a correct answer or produces a

kernel of at most 4k vertices for k-vertex cover.

Proof. To see that the algorithm always terminates, observe

that the graph either gives an output or reduces the graph.

Since we can have at most O(n) reductions, the algorithm

will eventually terminate.

We first show that a ‘No’ answer is always correct. The

algorithm will only output ‘No’ if there is a maximal matching

M in G where jV (M)j. 2k. Since we have to pick at least one

vertex from each edge, the vertex cover for this graph is

greater than k.

The algorithm modifies the instance (G, k), so we have to

make sure we do not introduce or remove any solutions. At

any stage of the algorithm the current graph and parameter

has been obtained by the repeated applications of the crown

reduction rule. By Rule 2, we are thus guaranteed that the

reduced instance is a ‘Yes’-instance if and only if the input

instance is a ‘Yes’-instance.
FIGURE 8: Example of a crown decomposition. The matched

edges are dashed.
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We have jV(G)j ¼ jV(M)j þ jV(G) 2 V(M)j � 2k þ 2k ¼

4k, so the algorithm outputs only graphs of at most 4k vertices.

Thus, the observation is correct. A

3.2.2. How is it used in practice?

Crown decompositions have been used with great success in

the vertex cover problem. Although it does not always reach

as good kernel as the competitive linear programming or

network flow algorithms it uses only a fraction of the time

and it is often worth using a crown reduction rule as a pre-

processing for the more time consuming methods, as reported

by implementations in [19].

4. FPT BY INDUCTION

We discuss techniques closely related to mathematical induc-

tion. If we are provided a solution for a smaller instance (G, k)

then we can for some problems use the information to deter-

mine the solution for one of the larger instances (G þ v, k)

or (G, k þ 1). We will argue that the two techniques iterative

compression and extremal method are actually two facets of

this inductive technique, depending on wether the problem

is a minimization problem or a maximization problem. In

his book Introduction to Algorithms [22], Manber shows

how induction can be used as a design technique to create

remarkably simple algorithms for a range of problems. He

suggests that one should always try to construct a solution

based on the inductive assumption that we have a solution to

smaller problems. For example, this leads to the well-known

insertion sort algorithm by noting that we can sort sequences

of n elements by first sorting n 2 1 elements and then inserting

the last element at its correct place.

This inductive technique may also be applied to the design

of FPT algorithms but more care must be taken on two

accounts: (i) we have one or more parameters and (ii) we are

dealing with decision problems. The core idea of the technique

is based on using the information provided by a solution for a

smaller instance. When an instance contains both a main input

and a parameter input, we must be clear about what we mean

by ‘smaller’ instances. Let (G, k) be an instance, where G is the

main input and k the parameter. We can now construct three

distinctly different ‘smaller’ instances (G 2 v, k), (G, k 2 1)

and (G 2 v, k 2 1). Which one of these to use?

We first show that using smaller instances of the type (G 2

v, k) is very suitable for minimization problems and leads to a

technique known as iterative compression. Then we show that

using smaller instances of the type (G, k 2 1) can be used to

construct algorithms for maximization problems and is in

fact the technique known as the extremal method (Fig. 10).

4.1. For minimization—iterative compression

In this section, we present iterative compression which works

well on certain parameterized minimization problems. Let us

assume that we can inductively (recursively) compute the solu-

tion for the smaller instance (G 2 v, k). Since our problems are

decision problems, we get either a ‘Yes’-answer or a

‘No’-answer. In both cases, we must use the information pro-

vided by the answer to compute the solution for (G, k). We

must assume that for a ‘Yes’-instance we also have a certificate

that verifies that the instance is a ‘Yes’-instance and it is this cer-

tificate that must be used to compute the solution for (G, k).

However, for a ‘No’-answer we may receive no extra infor-

mation. A class of problems where ‘No’-answers carry sufficient

FIGURE 10: Three ways, of which only two correspond to known

techniques, to design an FPT algorithm by induction.

FIGURE 9: A 4k kernelization algorithm for vertex cover.
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information is the class of monotone problems in which the

‘No’-instances are closed under element addition. Thus, if a

problem is monotone we can immediately answer ‘No’ for (G,

k) whenever (G 2 v, k) is a ‘No’-instance. Given a monotone

problem we can use a meta-algorithm as seen in Fig. 11.

The algorithm will recursively call itself at most jV(G)j

times, thus the running time of an algorithm of this type is

O(n) times the time it takes to compute a solution given a

smaller solution.

Note that many minimization problems are not monotone,

like k-dominating set where the addition of a universal

vertex always changes a ‘No’ answer to ‘Yes’ (unless

k � n). For such problems, we believe that iterative com-

pression is ill suited.

4.1.1. Example: k-feedback vertex set

We will give an algorithm for the problem k-feedback vertex

set using the technique described in the previous section.

Feedback vertex set (is there a k-set S such that G[V 2 S] is

acyclic?) is a monotone problem as adding new vertices will

never help to cover existing cycles. Consider the ‘Feedback

Vertex Set Algorithm’ in Fig. 12.

OBSERVATION 7. Algorithm ‘FVS’ is correct, and solves

k-feedback vertex set in FPT time.

Proof. We will first prove that the algorithm does not incor-

rectly decide the answer before running the treewidth sub-

routine. If the algorithm answers ‘Yes’ because jV (G)j � k,

it is correct as we can select V as our feedback vertex set. If

the algorithm answers ‘No’ because (G 2 v, k) is a

‘No’-instance, it is correct as k-feedback vertex set is a mono-

tone problem.

We assume the treewidth subroutine is correct so it remains

to show that the algorithm computes a tree decomposition of the

graph with bounded treewidth. The algorithm computes the

graph T ¼ G 2 (S < v) which is a forest, and it is easy to con-

struct a tree decomposition of width one from this forest, having

one bag for each edge. The algorithm then adds S < v to each

bag to obtain a correct tree decomposition of width k þ 2.

It follows from results in [23] that k-feedback vertex set is

solvable in FPT time if the treewidth is the parameter. This

gives the desired result. A

Two other papers that use this type of induction are [6, 24]. In

[24], Reed et al. managed to show that the problem k-odd cycle

cover (is there a k-set S such that G[V 2 S] is bipartite?) is in

FIGURE 12: An inductive algorithm for k-feedback vertex set.

FIGURE 11: A meta-algorithm for iterative compression on a monotone graph minimization problem.

TECHNIQUES FOR DESIGNING PARAMETERIZED ALGORITHMS 131

THE COMPUTER JOURNAL, Vol. 51 No. 1, 2008

 at M
em

orial U
niversity of N

ew
foundland on January 27, 2014

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/


FPT, thus settling a long open problem in the field. By

the induction hypothesis, assume that we can determine

if (G 2 v, k) is a ‘No’ or a ‘Yes’ instance for k-odd cycle

cover. The induction step is then in two parts. First, the trivial

part: to show that if (G 2 v, k) is a ‘No’-instance then the

inclusion of another vertex cannot improve the situation. The

second part deals with the situation when we have a positive

certificate S consisting of the k vertices to be deleted from

(G 2 v, k) to make it bipartite. If we have such a certificate S,

we can conclude that S < fvg is a solution of size at most k þ

1 for G. The authors then show, by a fairly complicated argu-

ment which we will not explain here, that given a solution of

size at most k þ 1 it is possible to determine in FPT time

whether or not there exists a solution of size k.

A very similar use of induction is seen in [6] where Dehne et al.

give a 2k kernel for k-vertex cover without using the complicated

Nemhauser–Trotter results [25]. By induction assume we can deter-

mine if (G 2 v) has a k-vertex cover, if no such cover exists we

cannot find one for G either. On the other hand if (G 2 v) has a

k-vertex cover S then S < fvg is a kþ 1-vertex cover for G and by

implication has a n 2 (kþ 1)-independent set. As long as

jV(G)j . 2kþ 2 we know by Lemma 1 that G has a crown

decomposition, which in turn leads to a reduction in G as seen in

Lemma 2. This reduction continues until the graph has size at most

2kþ 2, at which point we can test for k-vertex cover using a brute

force algorithm.

4.1.2. How is it used in practice?

The general practical effectiveness of this design technique

depends directly on how well the induction step can be

implemented. For the vertex cover problem above we use an

effective crown reduction algorithm and thus the accompany-

ing algorithm would run well in practice. We hope that

the implementations testing this technique in practice will

appear soon.

4.2. For maximization—the extremal method

For maximization problems we consider smaller instances of

the type (G, k 2 1), and induct on k instead of n. We say

that a problem is parameter monotone if the ‘No’-instances

are closed under parameter increment, i.e. if instance (G, k)

is a ‘No’-instance then (G, k0) is also a ‘No’-instance for all

k0 . k. For a parameter monotone problem, we can modify

the meta-algorithm from the previous section to obtain an

inductive algorithm for maximization problems. (see Fig. 13).

The Method of Extremal Structure5 is a design technique

that works well for parameter monotone maximization pro-

blems. In this technique, we do not focus on any particular

instance (G, k), but instead investigate the structure of

graphs that are ‘Yes’-instances for k, but ‘No’-instances for

k þ 1. Let G(k) be the class of such graphs, i.e. G(k) ¼ fG j

(G, k) is a ‘Yes’-instance, and (G, k þ 1) is a ‘No’-instanceg.

Our ultimate goal is to prove that there exists a function f(k)

such that maxfjV(G)j jG [ G(k)g � f(k). This is normally not

possible without some refinement of G(k), to do this we make

a set of observations E of the following type:

Since (G, k) is a ‘Yes’-instance, but (G, k þ 1) is a

‘No’-instance, G has property p. (1)

Given a set of such observations E and consequently a set of

properties P we try to devise a set of reduction rules R that

apply specifically to large graphs having the properties P.

We call our refined class GR(k) ¼ fGj no reduction rule in

R applies to (G, k), and (G, k) is a ‘Yes’-instance, and

(G, k þ 1) is a ‘No’-instanceg. If we can add enough obser-

vations to E and reductions rules to R to prove that there is a

function f(k) such that max fjV(G)j jG [ GR(k)g � f(k) we

have proven that:

If (i) no rule in R applies to (G, k) and (ii) (G, k) is a ‘Yes’-

instance and (iii) (G, k þ 1) is a ‘No’-instance, then

jV (G)j � f(k).

Given such a boundary lemma and the fact that the problem

is a parameter monotone maximization problem a kerneliza-

tion lemma follows, saying that if no rule in R applies to

(G, k) and jV(G)j . f(k), then (G, k) is a ‘Yes’-instance.

It is not immediately obvious that this can be viewed as an

inductive process, but we will now make this clear by present-

ing the Algorithmic Method, a version of the ‘Extremal

FIGURE 13: A meta-algorithm for parameter monotone problems.

5An exposition of this design technique can be found in Prieto’s PhD

thesis [4].
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Method’. Here the ‘Extremal Method’ can be used as the

inductive step, going from k to k þ 1, in an inductive

algorithm.

As its base case, the algorithm decides (G, 0), which is

usually a trivial ‘Yes’-instance for a maximization problem.

Our induction hypothesis is that we can decide (G, k0). Then

as long as k0 þ 1 � k we try to compute (G, k0 þ 1). If

(G, k0) is a ‘No’-instance we can immediately answer ‘No’

for (G, k0 þ 1) as the problem is parameter monotone. Other-

wise we can now make an algorithmic use of observations of

the type defined for extremal method ((1) above). For each of

the properties p [ P we check if G has the property p. If G

does not have property p then since (G, k0) is a ‘Yes’-instance

it follows that (G, k0 þ1) is also a ‘Yes’-instance. By the same

reductions and observations (although the reader should

observe that we here require properties to be FPT time verifi-

able), we obtain that

If no observation in E or reduction rule R applies to

(G, k0 þ 1) then jV(G)j, f(k).

At that point we can invoke a brute force algorithm to obtain

either a solution S or a ‘No’-answer for (G, k0 þ 1). This

answer for (G, k0 þ 1) can then be used in the next step,

k0 þ 2, of our inductive algorithm.

4.2.1. Example: k-packing of K1,3

Here we will give an inductive algorithm for deciding if a

graph has a subgraph isomorphic to k vertex disjoint copies

of K1,3. First note the obvious reduction rule that removes

edges whose endpoints both have degree at most two and

that can therefore not participate in any K1,3.

RULE 3. If 9vu [ E(G) such that deg(v) � deg(u) � 2 then

(G, k) is a ‘Yes’-instance if and only if (G0 ¼ (V (G),E(G) \ vu),

k) is a ‘Yes’-instance.

Vertices of degree larger than 4(k 2 1) þ 3 can on the

other hand always be the center node in a K1,3-star as there

cannot be more than 4(k 2 1) remaining vertices used in the

k-packing.

RULE 4. If 9v [ V (G) such that deg(v) . 4k 2 1 then

(G, k) is a ‘Yes’-instance if and only if (G0 ¼ G[V \ v],

k 2 1) is a ‘Yes’-instance.

OBSERVATION 8. k-packing of K1,3 is FPT.

Proof. We prove this by inducting on k. (G, 0) is a

trivial ‘Yes’-instance. Let the induction hypothesis be that

we can decide instance (G, k0 2 1) in FPT time and in case

of a ‘Yes’-instance also give the (k0 2 1) packing. We now

prove the induction step from an arbitrary k0 2 1 to k0.

By the induction hypothesis, we can decide (G, k0 2 1). If

(G, k0 2 1) is a ‘No’-instance then (G, k0) is also a

‘No’-instance as the problem is parameter monotone. Other-

wise we have, by the induction hypothesis, a (k 2 1)

2K1,3-packing. Let W be the vertices of this packing.

Reduce the graph G until none of the two rules above apply.

First observe that the max degree in G[V 2 W] is at most

two, as otherwise W is not inclusion-maximal and (G, k0)

becomes a trivial ‘Yes’-instance. This together with the two

reduction rules is enough to prove that the reduced instance

is a kernel.

From the second rule above it follows that N(W) � 4k(4k 2

1). From the first rule we can conclude that R ¼ V 2 (W <
N(W) is an independent set. Since R is an independent set,

each vertex in R must have at least one adjacent vertex

in N(W). Thus, from the observation above we have that

jRj � 2jN(W)j. In total: jVj ¼ jWj þ jN(W)j þ jRj � 4k þ

3.4k(4k 2 1) ¼ 48k2 2 8k. We can now compute a solution

on this kernel in a brute force manner to determine a solution

for (G, k0). This completes the induction step. A

4.2.2. How is it used in practice?

This technique, either the ‘Extremal Method’ or its variant the

‘Algorithmic Method’, has been applied successfully to a

range of problems, such as: k-max Cut [26], k-leaf spanning

tree [4], k-non-blocker [4], k-edge-disjoint triangle-packing

[27], k-K1,s-packing [28], k-K3-packing [29], k-set splitting

[30] and k-internal spanning tree [8].

We do not know of any practical implementation of algori-

thms of this type, but the kernelization results that can be

obtained from ‘Extremal Method’ argumentation is generally

quite good. This, together with the general simplicity of the

technique, indicates that the technique could be successful in

practice.

5. WIN/WIN

Imagine that we solve our problem by first calling an FPT

algorithm for another problem and use both its ‘Yes’ and

‘No’ answer to decide in FPT time the answer to our

problem. Since we then ‘win’ if its answer is ‘Yes’ and we

also ‘win’ if its answer is ‘No’, this is called a ‘win/win’ situa-

tion. In this section, we focus on techniques exploting this

behavior.

Consider the meta-algorithm shown in Fig. 14. We run our

decision algorithm F for problem B on input I. If F returns a

‘No’ answer, we know by the relationship between A and B

that A is a ‘Yes’-instance (this can sometimes yield a non-

constructive result where we know that A is a yes-instance

but we have no certificate). Otherwise we have obtained the

knowledge that I is a ‘Yes’-instance for B, and if F is construc-

tive, we also have a certificate. We then proceed to solve A

with the extra information provided. In the following sub-

section, we give examples of how this has been done in the

literature.
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5.1. Well-quasi-ordering and graph minors

Robertson and Seymour have shown that (i) the set of finite

graphs are wellquasi-ordered under minors and (ii) the

H-minor problem that checks if H is a minor of some input

graph, with k ¼ jV(H)j, is FPT. These two facts suffice to

prove that any parameterized graph problem whose Yes-

instances (or Noinstances) are closed under minors is FPT.

If analogous structural results could be shown for some

other relation, besides minors, then for problems closed

under this other relation we would also get FPT algorithms.

Thus, the general technique is called ‘well-quasi-ordering’.

We consider this a win/win algorithm as we relate the

problem we wish to solve to the FPT problem of checking if

one of the forbidden minors (or whatever other relation is

involved) appear in our problem instance.

Let us briefly explain the main ideas. A well-quasi-ordering

is a reflexive and transitive ordering which has no infinite

antichain, meaning that any set of elements, which are com-

parable in the ordering must be finite. A graph H is a minor

of a graph G, denoted H Wm G, if a graph isomorphic to H

can be obtained from contracting edges of a subgraph of G.

The graph minors theorem [3] states that ‘The set of graphs

are well-quasi-ordered by the minor relation’. Combined

with H-minor testing this can be used to prove existence of

an FPT algorithm for any problem A with the property that

for any k the ‘Yes’-instances are closed under minors. In

other words, let us assume that if Ak is the class of graphs

G such that (G, k) is a ‘Yes’-instance to problem A and

H Wm G for some G [ Ak then H [ Ak as well. Consider the

minimal forbidden minors of Ak, denoted MFM(Ak),

defined as follows: MFM(Ak) ¼ fG jG / � Ak and (8H Wm G,

H [ Ak_H ¼ G) (Fig. 15)g.

By definition, MFM(Ak) is an antichain of the Wm ordering

of graphs so by the graph minors theorem it is finite. Beware

that the non-constructive nature of the proof of the graph

minors theorem implies that we can in general not construct

the set MFM(Ak) and thus we can only argue for the existence

of an FPT algorithm. We do this by noting that (G, k) is a Yes-

instance of problem A iff there is no H [ MFM(Ak) such that

H Wm G. Since MFM(Ak) is independent of jGj, though depen-

dent on k, we can therefore decide if (G, k) is a Yes-instance in

FPT time by jMFM(Ak)j calls of H-Minor.

5.1.1. Example: k-feedback vertex set

Armed with this powerful tool, all we have to do to prove that

a parameterized graph problem is FPT, is to show that the Yes-

instances are closed under the operations of edge deletion,

vertex deletion and edge contraction. Consider the problem

k-feedback vertex set, where we ask for k vertices whose

removal creates an acyclic graph. Deleting an edge or vertex

does not create any new cycles in the graph. After contracting

the edge uv into a new vertex x the vertex x will be a part of

any cycle that was previously covered by both u and v, and

no new cycles apart from these are introduced by the

contraction.

FIGURE 14: The classical win/win algorithm structure, although other yes/no relationships between A and B may be used.

FIGURE 15: A meta-algorithm for the graph minors technique, applicable when the class fG j (G, k) is a ‘Yes’-instanceg is closed under minors.
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OBSERVATION 9. If (G, k) is a ‘Yes’-instance for k-feedback

vertex set and H Wm G, then (H, k) is a ‘Yes’-instance for

k-feedback vertex set.

We now have enough information to conclude that

k-Feedback Vertex Set is in FPT.

5.1.2. How is it used in practice?

Although its extreme simplicity makes the technique very

useful as a method for proving membership in FPT, the

number of forbidden minors is often quite large and even

worse, usually unknown. Thus, this technique is rarely

viable as a tool for designing practical algorithms.

5.2. Imposing FPT structure and bounded treewidth

In the literature on parameterized graph algorithms there are

several notable occurrences of a win/win strategy that

imposes a tree-like structure on the class of problematic

graphs, in particular by showing that they must have treewidth

bounded by a function of the parameter. This is then combined

with the fact that many NP-hard problems are solvable in FPT

time if the parameter is the treewidth of the input graph.

5.2.1. Example: k-dominating set

Let us briefly explain this technique in the case of finding

k-dominating sets in planar graphs, where a very low-

treewidth bound on Yes-instances gives very fast FPT algori-

thms. In [32], it is shown that a planar graph that has a

k-dominating set has treewidth at most c
p

k for an appropriate

constant c. Thus, we have a win/win relationship, since we can

check in polynomial time if a planar graph has treewidth at

most c0
p

k [33], for some slightly larger constant c0, and if so

find a tree-decomposition of this width. If the treewidth is

higher we can safely reject the instance, and otherwise we

can run a dynamic programming algorithm on its tree-

decomposition, parameterized by c0
p

k, to find in FPT time

the optimal solution. In total this gives a O*(c
00p

k) algorithm

for deciding if a planar graph has a dominating set of size k.

A series of papers have lowered the constant c
00

of this

algorithm, by several techniques, like moving to branchwidth

instead of treewidth, by improving the constant c and by

improving the FPT runtime of the dynamic programming

stage. Yet another series of papers have generalized these

‘subexponential in k’ FPT algorithms from dominating set to

all so-called bidimensional parameters and also from planar

graphs to all graphs not having a fixed graph H as minor [34].

5.2.2. How is it used in practice?

According to [34] the only known algorithms with subexpo-

nential running time O*(c
pk) are algorithms based on impos-

ing treewidth and branchwidth structure on the complicated

cases, and these fall into the win/win category. We cannot

say much about the practical usefulness of this design

technique in general. The running time of a win/win algorithm

depends on two things: the nature of the observation that ties

one problem to another, and the running time to solve the other

problem. Normally the observation can be checked in poly-

nomial time, but to have a practical implementation it must

also give a reasonable parameter value for the other problem.
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