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The fixed-parameter approach is an algorithm design technique for solving combinatorially hard

(mostly NP-hard) problems. For some of these problems, it can lead to algorithms that are both effi-

cient and yet at the same time guaranteed to find optimal solutions. Focusing on their application to

solving NP-hard problems in practice, we survey three main techniques to develop fixed-parameter

algorithms, namely: kernelization (data reduction with provable performance guarantee), depth-

bounded search trees and a new technique called iterative compression. Our discussion is circum-

stantiated by several concrete case studies and provides pointers to various current challenges

in the field.
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1. INTRODUCTION

The NP-hard problems are difficult to solve efficiently and

optimally at the same time because one has to deal with a

combinatorial explosion of the search space. Thus, whenever

a problem is proven to be NP-hard and large instances of it

need to be solved, it is common practice to employ heuristic

algorithms (that are either not guaranteed to yield optimal

solutions or give no useful guarantees concerning their

running time), approximation algorithms, or even attempt to

sidestep the problem altogether.

Not all instances of an NP-hard problem are equally hard to

solve, however. Rather, this hardness depends on the particu-

lar structure of a given instance. Opposed to ‘classical’ com-

putational complexity theory—which sees problem instances

only in terms of their size—the concept of fixed-parameter

tractability (FPT) [1–3] reflects such differences in structural

hardness by expressing them through a so-called parameter,

which is a nonnegative integer variable usually denoted k.

The FPT thus generalizes the concept of ‘easy special cases’

that is known for virtually all NP-hard problems: whenever the

parameter k turns out to be small for an instance of an NP-hard

problem, a fixed-parameter algorithm can solve this instance

quite fast (sometimes even in linear time)—with provable

bounds on the running time and guaranteeing the optimality

of the solution. More precisely, a size-n instance of a fixed-

parameter tractable problem can be solved in f(k) . p(n) time,

where f is a function that solely depends on the parameter

k and p(n) is a polynomial in n. Establishing the FPT of an

NP-hard problem thus implies that the combinatorial

explosion that is inherent to solving it can be fully confined

to the parameter.

As parameterized complexity theory points out, there are

problems that are likely not fixed-parameter tractable with

respect to a specific parameter [1–3]. For those NP-hard pro-

blems that are fixed-parameter tractable, however, their FPT

constitutes far more than a mere ‘theoretical curiosity.’

Rather, there are numerous examples where fixed-parameter

techniques have proved themselves to be quite useful and rel-

evant to solving some NP-hard problems both efficiently and

optimally in practice. The presentation of some of these is

the central concern of this paper.

Together with concrete application scenarios, we review

three important techniques for designing such practical fixed-

parameter algorithms.1 This is accompanied by a discussion of

several experimental results, which underpin that the concept

of FPT belongs into the toolkit of every algorithm designer—

no matter whether they have a more theoretical or a more prac-

tical orientation.

Most of the problems we deal with in this work are from

graph theory [5]; by default, we consider only simple undir-

ected graphs G ¼ (V, E), and use n to denote the number of

its vertices and m to denote the number of edges.

1An older survey in this direction is given by Fellows [4]. A broader per-

spective on the techniques and algorithms we present in this work can be found

in the monograph [3].
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The fixed-parameter techniques that we exhibit are

† kernelizations, that is, data reduction schemes with pro-

vable performance guarantees (Section 2),

† depth-bounded search trees (Section 3) and

† iterative compression (Section 4).

We conclude in Section 5 with a brief discussion of further

techniques relevant in the context of FPT.

To better illustrate the techniques we survey, they are all

introduced by means of a single natural and easy to grasp

problem from graph theory, namely the NP-hard VERTEX

COVER problem.

VERTEX COVER

INPUT: an undirected graph G ¼ (V, E) and a nonnegative

integer k.

TASK: find a subset of vertices C#V with k or fewer vertices

such that each edge in E has at least one of its endpoints in C.

An illustration for this problem is provided in Fig. 1.

Solving VERTEX COVER is of relevance to many applications

ranging from network monitoring and prevention of denial

of service attacks [6] to bioinformatics-related scenarios

such as microarray data analysis [7] and the computation of

multiple sequence alignments [8]. In FPT research, VERTEX

COVER plays a special role in that many important discoveries

that influenced the whole field originated from the study of this

problem.

2. KERNELIZATION: DATA REDUCTION WITH
GUARANTEED PERFORMANCE

Before firing up a computationally expensive algorithm to

solve a combinatorially hard problem (such as efficiently

monitoring network transmission links or cost-effectively

locating wireless transmitters), it suggests itself to try a

reduction of the input data. The idea is to quickly presolve

those parts of the input data that are relatively easy to cope

with, shrinking it to those parts that form the ‘really hard’

core of the problem. Costly algorithms need then only be

applied to this reduced instance. In some practical scenarios,

data reduction may even reduce a seemingly hard problem

to triviality [9, 10].

Early examples for data reduction techniques were already

given by Quine [11] in 1952. Today, there are many examples

of problem instances that would not be solvable without using

data reduction and preprocessing algorithms.2 For example,

Bixby [13] gives a striking account with respect to the linear

program solver CPLEX, discussing a large linear program

that can be solved in half an hour when data reduction is

employed but is ‘far from even being feasible’ [13] for the

unreduced instance even after hours of computation.

Another impressive account of the power of data reduction

is given by Weihe [10] where—in the context of the European

railroad network—two simple data reduction rules allow an

NP-hard problem to be solved in mere minutes for a graph

consisting of more than 1.6 � 105 vertices and 1.6 � 106

edges.

Some data reductions rules are very simple and readily dis-

covered by everybody tackling a problem. Others are hidden

gems that require deeper digging and insight into a problem’s

structure. Once an effective (and efficient) reduction rule has

been found; however, it is useful in virtually any problem

solving context, whether it be heuristic, approximative or

exact.

Clearly, practitioners are likely to already be aware of data

reduction rules. Why should they also consider FPT in this

context? The reason is that fixed-parameter theory provides

a way to use data reduction rules not only in a heuristic

way, but to prove their power by so-called kernelizations.

These give an upper bound on the size of a reduced instance

that solely depends on the parameter value. This opens the

door to a potentially fruitful dialogue between practitioners

and theoreticians: kernelizations can explain, and prove,

why rules work so well in practice; and the quest for kerneli-

zations can lead to new and powerful data reduction rules

based on deep structural insights.

2.1. An introductory example

Consider our running example VERTEX COVER. To reduce the

input size for a given instance of this problem, it is clearly per-

missible to remove isolated vertices, that is, vertices with no

adjacent edges. This leads to a first simple data reduction rule.

REDUCTION RULE VC1

Remove all isolated vertices.

In order to cover an edge in the graph, one of its two end-

points must be in the vertex cover. If one of these is a

degree-1 vertex, then the other endpoint has the potential to

cover more edges than the degree-1 vertex, leading to a

second reduction rule.

REDUCTION RULE VC2

For degree-1 vertices, put their neighbouring vertex into the

cover.

FIGURE 1. A graph with a size-8 vertex cover (cover vertices are

marked black).

2The use of data reduction techniques is not restricted to a preprocessing

phase only. On the contrary, there is empirical as well as theoretical evidence

that interleaving data reduction techniques with the ‘main’ problem solving

algorithm can yield significant speedups (see Section 3.4 and [12]).

8 F. HÜFFNER et al.
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Here, ‘put into the cover’ means adding the vertex to the

solution set and removing it and its incident edges from the

instance. Note that this reduction rule assumes that we are

only looking for one optimal solution to the VERTEX COVER

instance we are trying to solve; there may exist other

minimum-cardinality vertex covers that do include the

reduced degree-1 vertex. Hence, this reduction rule is not suit-

able where it is of interest to enumerate all vertex covers of a

given graph in order to choose the one most suitable for the

application at hand.

After having applied the easy rules VC1 and VC2, we can

further do the following in the fixed-parameter setting where

we ask for a vertex cover of size at most k.

REDUCTION RULE VC3

If there is a vertex of degree at least k þ 1, put this vertex

into the cover.

This rule is correct because if we did not take v into the

cover, then we would have to take every single one of its

k þ 1 neighbours into the cover in order to cover all edges

adjacent to v. This is not possible because the maximum

allowed size of the cover is k.

After exhaustively performing the rules VC1–VC3, no

vertex in the remaining graph has a degree higher than

k, meaning that choosing a vertex into the cover can cause

at most k edges to become covered. Since the solution set

may be no larger than k, the remaining graph can have at

most k2 edges if it is to have a solution. By rules VC1 and

VC2, every vertex has degree at least two, which implies

that the remaining graph can contain at most k2 vertices.

More abstractly speaking, what have we done here? After

applying a number of rules in polynomial time to an instance

of VERTEX COVER, we arrived at a reduced instance whose size

can solely be expressed in terms of the parameter k. These prop-

erties are formalized in the concept of a problem kernel [1].

DEFINITION 2.1. Let L be a parameterized problem, that is,

L consists of input pairs (I, k), where I is the problem instance

and k is the parameter. A reduction to a problem kernel (or

kernelization) means to replace an instance (I, k) by a

reduced instance (I0,k0) called problem kernel such that

(1) k0 � k,

(2) the size of I0 is smaller than g(k) for some function g

only depending on k and

(3) (I, k) has a solution if and only if (I0,k0) has one. The

reduction from (I, k) to (I0,k0) must be computable in

polynomial time.

While this definition does not formally require that it is

possible to reconstruct a solution for the original instance

from a solution for the problem kernel, all kernelizations we

are aware of easily allow for this.

The methodological approach of devising kernelizations,

including various techniques of data reduction, is best

learned by some concrete examples which we discuss in

Sections 2.2 and 2.3.

Before moving on to these case studies, let us state some

useful general observations and remarks concerning Definition

2.1 and its connections to FPT. Most notably, there is a close

connection between fixed-parameter tractable problems and

those problems for which there exists a problem kernel—

they are exactly the same.

THEOREM 2.1 [14]. Every problem that is fixed-parameter

tractable is kernelizable and vice versa.

Unfortunately, the practical use of this theorem is limited:

the running time of a fixed-parameter algorithm obtained

directly from a kernelization is usually not practical; and, in

the other direction, the theorem does not constructively

provide us with a data reduction scheme for a fixed-parameter

tractable problem. Hence, the main use of Theorem 2.1 is to

establish the FPT or amenability to kernelization of a

problem—or show that we need not search any further (e.g.

if a problem is known to be fixed-parameter intractable, we

do not need to look for a kernelization).

Rule VC3 explicitly needed the value of the parameter k.

We call this a parameter-dependent rule as opposed to the

parameter-independent rules VC1 and VC2, which are obliv-

ious to k. In applications, one typically does not know the

actual value of k in advance and has to get around this by itera-

tively increasing the values of k. Although asymptotically this

is not slower, in practice one would of course prefer to avoid

this extra outer loop. However, assuming explicit knowledge

of the parameter clearly adds some leverage to finding data

reduction rules and is hence frequently encountered in

kernelizations.

We continue with two case studies in Sections 2.2 and 2.3.

A broader overview can be found in the literature [3, 15, 16].

2.2. VERTEX COVER kernelization further explored

In Section 2.1, we discussed a simple to achieve size-O(k2)

problem kernel for VERTEX COVER. The corresponding

parameter-dependent kernelization is based on a simple obser-

vation concerning high-degree vertices. There are several

more kernelization techniques for VERTEX COVER—two of

which we explore further here—which feature parameter

independence and much improved bounds on the kernel

size. (A more detailed treatment can be found in [17–19].)

2.2.1. Kernelization based on matching

The kernelization for VERTEX COVER in Section 2.1 is based

on piecing together very simple data reduction rules that

examine local substructures. This is a frequently employed

and successful approach. In this section, in contrast, we

show a kernelization based on global properties of a VERTEX

COVER instance. It is based on the following theorem of

Nemhauser and Trotter from 1975 [20].

TECHNIQUES FOR FIXED-PARAMETER ALGORITHMS 9
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THEOREM 2.2. For an n-vertex graph G ¼ (V, E) with m

edges, we can compute two disjoint sets C0#V and V0#V in

O(
ffiffiffi

n
p

. m) time such that the following three properties hold.

(1) There is a minimum-size vertex cover of G that contains

C0.

(2) A minimum vertex cover for the induced subgraph G[V0]

has size at least jV0j/2.

(3) If D#V0 is a vertex cover of the induced subgraph

G[V0], then C: ¼ D < C0 is a vertex cover of G.

Determining the two sets C0 and V0 in this theorem involves

the computation of a maximum bipartite matching on a graph

constructed from G. While Theorem 2.2 may look somewhat

unwieldy at first sight, an observation by Chen et al. [21]

makes it the key to one of the best data reduction procedures

known for VERTEX COVER.

THEOREM 2.3. Let (G ¼ (V, E),k) be an instance of VERTEX

COVER. In O(k . jVj þ k3) time we can reduce this instance to a

kernel (G0 ¼ (V0,E0),k0) with jV0j � 2 k.

Proof. We begin by using the reduction to a problem kernel as

sketched in Section 2.1 to get a reduced instance containing at

most O(k2) vertices and edges. This reduction takes O(k . jVj)

time. It may decrease the parameter value by putting some

vertices into the cover and we let the new parameter value

be k00 � k. On the resulting reduced instance, the two sets C0

and V0 as described in Theorem 2.2 can be computed in time

O(
ffiffiffiffiffi

k 2
p

. k2) ¼ O(k3).

The set C0 contains vertices that have to be in the vertex

cover, and we define k0: ¼ k00 2 jC0j. Observe that due to

Theorem 2.2 we directly know that if jV0j . 2 k0, then there

is no vertex cover of size k for the original graph G. Otherwise,

we let the subgraph induced by V0 in G be the problem kernel

(of size at most 2 k0 � 2 k), knowing by Theorem 2.2 that the

remaining vertices for a minimum vertex cover of G can be

found by searching for a minimum vertex cover in it. A

Can we find even smaller problem kernels for vertex cover

of size, say, 1.5 k? There is some evidence that this is not poss-

ible because all kernelizations we know today are also

approximation algorithms: if there were a kernel for VERTEX

COVER that guaranteed to have only 1.5 k vertices, we could

in polynomial time obtain a vertex cover for G that is at

most 1.5 times larger than the optimum k simply by taking

all vertices of the kernel. This would be a major breakthrough

in approximation theory, since it has been conjectured that it is

not possible to polynomial-time approximate vertex cover to

within a constant factor smaller than two [22]. Therefore, it

seems unlikely that the size of the VERTEX COVER kernel

can be further improved.

Theorem 2.2 can be generalized in two ways: one concerns

finding minimum weighted vertex covers, where vertices have

a positive real weight [23]. The second one concerns finding

all vertex covers up to sizek; Theorem 2.2 only leads to one

particular minimum vertex cover, excluding others from

further consideration. Recent research shows how to modify

these results in order to obtain all optimal solutions [23].

Next we present an alternative kernelization for VERTEX

COVER which also achieves a problem kernel of size linear

in k and is parameter-independent.

2.2.2. Kernelization based on crown structures

Many data reduction rules examine only specific local sub-

structures of the input such as a vertex and its neighbourhood

(e.g. Reduction Rules VC2 and VC3). Recently, there have

been several examples of generalizing such rules to examining

arbitrarily large substructures. This can considerably increase

their power, as we demonstrate here with the crown reduction

rule for VERTEX COVER, which generalizes Rule VC2 (the

elimination of degree-1 vertices by taking their neighbours

into the cover).

A crown in a graph consists of an independent set I (that is,

no two vertices in I are connected by an edge) and a set H

containing all vertices adjacent to I. In order for I < H to

be a crown, there has to exist a size-jHj maximum matching

in the bipartite graph induced by the edges between I and

H (i.e. one in which every vertex of H is matched). An

example for a crown structure is given in Fig. 2—in a sense,

degree-1 vertices are the most simple crowns.

If there is a crown I < H in the input graph G, then we need

at least jHj vertices to cover all edges in the crown. But since

all edges in the crown can be covered by taking at most jHj

vertices into the cover (as I is an independent set), there is a

minimum-size vertex cover for G that contains all the vertices

in H and none of the vertices in I. We may thus delete any

given crown I < H from G, reducing k by jHj.

Two issues remain to be dealt with, namely how to find

crowns efficiently and giving an upper bound on the size of

the problem kernel that can be obtained via crown reductions.

It turns out that finding crowns can—as with the Nemhauser–

Trotter kernelization—be achieved in polynomial time by

computing maximum matchings [24]. The size of the thus

reduced instance is upper-bounded via the following theorem.

THEOREM 2.4. A graph that is crown-free and has a vertex

cover of size at most k can contain at most 3 k vertices.

Thus, by generalizing Reduction Rule VC2 which by

itself is not a kernelization, we have obtained an efficient

FIGURE 2. A graph G with a crown I < H. Note how the thick

edges constitute a maximum matching of size jHj in the bipartite

graph induced by the edges between I and H.

10 F. HÜFFNER et al.
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parameter-independent kernelization which yields a linear-

size kernel for VERTEX COVER. More examples for reductions

for VERTEX COVER that are based on arbitrarily-large graph

substructures are given by Chen et al. [25].

Crown reductions also demonstrate how structurally very

different viewpoints of the same problem (in this case, kerne-

lizing a given instance of VERTEX COVER) lead to similar

results (a kernel of size linear in k). Along the same lines,

there has recently been interesting research into the intercon-

nections between crown reduction rules and kernelization

based on linear programming [18].

2.2.3. Applications

VERTEX COVER can be considered the Drosophila of fixed-

parameter research in that many initial discoveries that influ-

enced the whole field originated from studies of this single

problem. It comes as no surprise that also the experimental

field is more advanced for this problem than for others from

the realm of FPT.

Abu-Khzam et al. [17] studied various kernelization

schemes for VERTEX COVER and their practical performance

both with respect to time as well as with respect to the result-

ing kernel size. For bioinformatics-related networks derived

from protein databases and microarray data, they found that

crown reductions turn out to be very fast to compute in prac-

tice (almost as fast as an extended version of Reduction Rules

VC1–VC3) and are sometimes just as effective as approaches

with a theoretically better bound (such as the Nemhauser–

Trotter reduction) while at the same time being faster to

carry out. Abu-Khzam et al. therefore recommend to always

use crown reduction as a general preprocessing step when

solving VERTEX COVER before attempting other, more

costly, reduction schemes.

Another interesting problem where VERTEX COVER reduction

rules have successfully been applied is that of searching

maximum cliques (that is, maximum-size fully connected sub-

graphs), making use of the fact that if an n-vertex graph has a

maximum clique of size (n 2 k), then its complement graph

has a size-k minimum vertex cover. Details and experimental

results with applications to computational biology are given

by Abu-Khzam et al. [17, 18, 26].

2.3. The DOMINATING SET problem

Domination is a central concept in graphs and can safely be

considered a whole research area on its own—already in

1998, more than 200 research papers studied the algorithmic

complexity of domination [27]. The most basic domination

problem is DOMINATING SET.

DOMINATING SET

INPUT: an undirected graph G ¼ (V, E) and a nonnegative

integer k.

TASK: find a subset S#V with at most k vertices such that

every vertex v [ V is either in S or has at least one neigh-

bour in S.

The problem is illustrated in Fig. 3. As an intuition, one

might think of a minimum dominating set as a set of most

important vertices that are able to ‘observe’ or ‘control’ all

other vertices. A straightforward scenario for domination pro-

blems is in supply station location tasks, but there are numer-

ous other applications—e.g. in voting scenarios and network

analysis [28, 29]—where domination plays a key role.

DOMINATING SET is NP-hard and known to be intractable

even from a fixed-parameter point of view, that is, it is

highly unlikely that there is a fixed-parameter algorithm for

dominating set that confines the exponential part of its

running time to the solution size k [1]. By Theorem 2.1, this

means that there is also a little hope for a problem kernel for

the general DOMINATING SET problem.

Therefore, why are we further discussing DOMINATING SET

here in the context of FPT? Interestingly, Alber et al. [30]

found two data reduction rules for DOMINATING SET that not

only prove very effective in practice (especially for sparse

graphs), but which also yield a parameter-independent

reduction to a linear problem kernel for DOMINATING SET

as long as the input graph is restricted to being planar.

Hence, this is a good example of how structural insight

gained during search for a kernelization proves useful even

outside FPT.

Analogously to the crown reduction rules for VERTEX

COVER, the DOMINATING SET rules we discuss in this section

have recently been generalized to so-called reduction

schemes from which they can be derived as special cases

[31]. Some further reduction rules for DOMINATING SET are

also given by Alber et al. [32] and Chen et al. [33].

2.3.1. Reduction rules for domination

Both reduction rules for DOMINATING SET discussed here are

based on local neighbourhood considerations. The simpler

one considers the neighbourhood of one vertex, the other

one the neighbourhood of two vertices.

For the first reduction rule, we partition the neighbourhood

N(v) of an arbitrary vertex v [ V in the input graph into three

disjoint sets N1 (v), N2 (v) and N3 (v) depending on local neigh-

bourhood structure. More specifically, we define

† N1 (v) to contain all neighbours of v that have edges to

vertices that are not neighbours of v,

FIGURE 3. A graph with a size-4 dominating set (marked black).

TECHNIQUES FOR FIXED-PARAMETER ALGORITHMS 11
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† N2 (v) to contain all vertices from N(v)nN1 (v) that have

edges to at least one vertex from N1 (v) and

† N3(v) to contain all neighbours of v that are neither in N1

(v) nor in N2 (v).

An example that illustrates such a partitioning is given in

the upper part of Fig. 4. A helpful and intuitive interpretation

of the partition is to see vertices in N1 (v) as exits because they

have direct connections to the world outside the closed neigh-

bourhood of v, vertices in N2 (v) as guards because they have

direct connections to exits and vertices in N3 (v) as prisoners

because they do not see the world outside v < N(v).

Now consider a vertex w [ N3 (v). This vertex is only

capable of dominating v and those neighbours of v that only

have connections to N(v). Hence, to dominate w, at least one

vertex of fvg< N2 (v) < N3 (v) must be contained in a domi-

nating set for the input graph. Since v can dominate all vertices

that would be dominated by choosing a vertex from N2 (v) <
N3 (v) into the dominating set, we obtain the following data

reduction rule for DOMINATING SET.

REDUCTION RULE DS1

If N3 (v) = 1 for some vertex v, then remove N2 (v) and N3

(v) from G and choose v to be in the dominating set.

Similar to this rule, we can also explore the neighbourhood

set N(v, w): ¼ N(v) < N(w) of two vertices v, w [ V that have

distance at most three to each other. Analogously to the single

vertex case, we partition N(v, w) into three disjoint subsets as

follows.

† N1 (v, w) to contain all neighbours of v and w that have

edges to vertices that are neither neighbours of v nor w.

† N2 (v, w) to contain all vertices from the set N(v, w)nN1 (v,

w) that have edges to at least one vertex from N1 (v, w).

† N3 (v, w) to contain all neighbours of N(v, w) that are

neither in N1 (v, w) nor in N2 (v, w).

The lower part of Fig. 4 shows an example, which illustrates

the partitioning of N(v, w) into the subsets N1(v, w), N2(v, w)

and N3(v, w). Deferring further details to the literature [30],

this neighbourhood partition yields a Reduction Rule DS2

that can be applied whenever N3(v, w) is nonempty. While

the intuition is similar to the one-vertex case, this reduction

rule is somewhat more complicated because it includes four

different cases to distinguish.

2.3.2. Reduction rule performance

As mentioned above, we cannot hope for data reduction rules

that yield a problem kernel for dominating set in the general

case. However, for planar graphs, it is possible to prove with

some technical expenditure that exhaustive application of

reduction rules DS1 and DS2 actually is a parameter-

independent reduction to a linear-size problem kernel.3

THEOREM 2.5 [30]. A planar graph G to which neither Rule

DS1 nor DS2 can be applied has size at most 335 k where k is

the size of a minimum dominating set in G.

From a practitioner’s standpoint, the constant 335 is not too

intriguing (although recent efforts have improved it to 67

[33]). However, experimental results presented in several

works [30, 35, 36] show a completely different picture in

that in practice, these rules are very effective and yield

much smaller kernels than the theoretical analysis suggests.

According to Alber et al. [30], amending Reduction Rules

DS1 and DS2 by four very simple additional rules (which

are quite similar to Reduction Rules VC1–VC3, see [35] for

details) yields a powerful data reduction scheme that

removes, on average, 99.7% of the vertices and 99.8% of

the edges when solving dominating set on a random planar

graph. Also, an equally high percentage of the vertices belong-

ing to a minimum dominating set is detected. This yields some

impressive examples of the power of data reduction such as

the one shown in Fig. 5. Subsequent experimental studies

[35] on some real-world networks such as power-law Internet

topologies showed the rules to be just as effective there,

quickly finding optimal dominating sets of up to a thousand

vertices for networks consisting of around 10 000 vertices.

2.4. Practising kernelization

The main point of this section is to draw attention to the fact

that, compared to the amount of papers on new fixed-

parameter algorithms and the accompanying discovery of

more and more (improved) problem kernels, very little exper-

imental work has been done so far in order to assess the

FIGURE 4. Partitioning the input graph of a dominating set instance.

The upper part shows the partitioning of the neighbourhood of a

single vertex v. Since N3 (v) =1, Reduction Rule DS1 applies.

The lower part shows the partitioning of a neighbourhood N(v, w)

of two vertices v and w. Since N3 (v, w) cannot be dominated by a

single vertex, Case 2 of Rule DS2 applies.

3Fomin and Thilikos [34] generalize this result beyond planar graphs by

showing that Rules DS1 and DS2 yield a linear-size problem kernel for any

graph of bounded genus.
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practical value of these discoveries. This is somewhat surpris-

ing not only in that many fixed-parameter tractable problems

are of considerable practical relevance, but also because

experimentally studying their known kernelizations is ben-

eficial both to theoretical as well as practical computer scien-

tists in a number of ways as will be outlined here.

While some provable kernel bounds might be very large

and thus not always appeal to a practitioner at first sight,

the underlying data reduction may still perform very well

in practice. One example for this is the reduction rules for

DOMINATING SET we have presented in this section.

Another, more recent, example of this is given in the work

by Gramm et al. [37] concerning the NP-hard CLIQUE

COVER problem.

CLIQUE COVER

INPUT: an undirected graph G and a nonnegative integer k.

TASK: find a set of at most k cliques in G such that each edge

has both endpoints in at least one such clique.

This problem has numerous applications in diverse fields

such as compiler optimization, computational geometry and

applied statistics. While Gramm et al. only prove an exponen-

tial kernel size of O(2k), their experimental results indicate a

much better effectiveness on random and real-world data.

Generally speaking, kernelizations are often based on some

deeper insights into the structural properties of a given

problem in order to be able to prove that the size of

the reduced instance is indeed only dependent on the

parameter k. Such insight often leads to very ‘well motivated’

and hence effective reduction rules (even if only a large kernel

size is provably achieved). Performing experimental studies

on other fixed-parameter tractable problems and their kerneli-

zations would likely motivate theoreticians to look at the ‘hard

cases’ and devise further data reductions for them. While such

an approach certainly is not much younger than data reduction

itself, in the realm of FPT it allows not only for further

‘average-case’ improvements of data reduction but can also

achieve provable performance guarantees and thus yield a

solid basis for newly devised data reduction schemes.

While there exist some lower bounds on provable kernel

sizes (e.g. Chen et al. [33] proved that there exists no

size-(2 2 1)k problem kernel with constant 1 . 0 for

DOMINATING SET in planar graphs unless P ¼ NP), the gaps

among theoretical lower bounds, practically achieved

bounds and known theoretical upper bounds are still enor-

mous and thus promise kernelization to provide a fruitful

field for future research.

2.5. Current research and future challenges

As to some recent theoretical developments, Damaschke [38]

suggests the notion of a full kernel that contains all small

solutions to a given problem (in a compressed form) and

thereby allows for their efficient enumeration. This is a

recent area of research, and not many full kernels are known.

Another active field of research is the attempt to provide a

more systematic way of finding good kernelizations by the

method of extremal structure (also known as method of coor-

dinatized kernels) [39, 40]. Also, a general methodology for

developing linear-size problem kernels for planar graph pro-

blems has been recently introduced [41]. Finally, it has been

tried to obtain data reduction rules in an automated way [42].

Besides the practical challenge of exploring the power of

kernelizations, let us name several more theoretical challenges

here that we find to be of relevance to the practitioner.

† Can the worst-case provable kernel size for CLIQUE

COVER be improved to polynomial?

† Can the technically involved data reduction rules for the

network communication problem MULTICUT IN TREES

[43] be amended or better analysed in order to obtain a

polynomial size problem kernel?

† Recently, data reductions for FEEDBACK VERTEX SET (see

Section 4) have been reported that yield kernels of size

polynomial in k [44, 45]. Are there data reductions that

yield size-O(k) (that is, linear-size) kernels?

† Parameterized by the size of a minimum solution, the

3-HITTING SET problem has a problem kernel of size

O(k3) which can be found in linear time [46]. Can the

underlying data reduction be generalized to apply to

d-HITTING SET (for fixed values of d)?

† MAXIMUM SATISFIABILITY has a problem kernel of size

O(k2) (where k is the minimum number of clauses that

have to be satisfied) [47]. This problem kernel is uninter-

esting from an algorithmic standpoint because it makes

FIGURE 5. Example to illustrate the power of the dominating set

Reduction Rules DS1 and DS2. Their application reduces the left-

hand (planar) graph with approximately 1500 vertices to the right-

hand 16-vertex graph. The black/white colouring of the reduced

graph reflects that some vertices (the grey ones) are already known

to be dominated due to application of the reduction rules.
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use of the property that we can always satisfy half of the

clauses of a Boolean formula. Can data reduction be used

to prove a better kernel that goes beyond this?

3. DEPTH-BOUNDED SEARCH TREES

The previous section studied data reduction and problem ker-

nelization schemes for (pre)processing the given input data

and cutting away its ‘easy parts’. This leaves behind the

‘really hard’ problem kernel to be solved. A standard way to

explore the huge search space related to optimally solving a

computationally hard problem is to perform a systematic

exhaustive search. This can be organized in a tree-like

fashion, which is the subject of this section.

Certainly, search trees are no new idea and have been exten-

sively used in the design of exact algorithms (e.g. see

[48–50]); they are also used extensively in practice to solve pro-

blems such as SAT, where the technique is known as the Davis–

Putnam–Logemann–Loveland algorithm. Probably most well

known as ‘backtracking algorithms’, search tree algorithms are

also referred to as ‘splitting algorithms’ in some literature.

The main contribution of fixed-parameter theory to search

tree approaches is the consideration of search trees whose

depth is bounded by the parameter. Combined with insights

on how to find useful and possibly nonobvious parameters,

this can lead to search trees that are much smaller than those

of naive brute-force searches. Additionally, fixed-parameter

theory provides means to provably improve the speed of

search tree exploration, particularly by exploiting data

reduction rules as examined in Section 2.

3.1. VERTEX COVER revisited

The most naive search tree approach for solving vertex cover

is to just take one vertex and branch into two cases: either this

vertex is in the vertex cover or not. This leads to a search tree

of size O(2n). As we outline in this section, we can do much

better than that and obtain a search tree whose depth is upper-

bounded by k, giving a size bound of O(2k). Since usually

k�n, this can draw the problem into the zone of feasibility

even for large graphs (as long as k is small).

The basic idea is to find a small subset of the input instance

in polynomial time such that at least one element of this subset

must be part of an optimal solution to the problem. In the case

of VERTEX COVER, the most simple such subset is any two ver-

tices that are connected by an edge. By definition of the

problem, one of these two vertices must be part of a solution.

Thus, a simple search-tree algorithm to solve VERTEX COVER

on a graph G proceeds by picking an arbitrary edge e ¼ fv, wg

and recursively searching for a vertex cover of size k 2 1 both

in G 2 v and G 2 w.4 That is, the algorithm branches into two

subcases knowing one of them must lead to a solution of size

at most k—if one such solution should exist.

As shown in Fig. 6, these recursive calls of the simple VERTEX

COVER algorithm can be visualized as a tree structure. Because

the depth of the recursion is upper-bounded by the parameter

value and the search always branches into two subcases, the

size of this tree is upper-bounded by O(2k). Note how the size

of the tree is independent of the size of the initial input instance

and only depends on the value of the parameter k.

The main idea behind fixed-parameter algorithmics is to get

the combinatorial explosion as small as possible. For our

VERTEX COVER example, one can easily achieve a size-o(2k)

search tree by distinguishing more detailed branching cases

rather than just picking single endpoints of edges to be in the

cover. Note that analogously to the case of data reduction, we

are assuming that only one minimum solution is sought after.5

(1) If there is a vertex of degree one, then put its neighbour into

the cover (just as in Reduction Rule VC2 in Section 2.1).

(2) If there is a vertex v of degree two, then either both

neighbours of v are in a minimum-size cover or

v together with all neighbours of its neighbours.

(3) If there is a vertex v of degree at least three, then either

v or all its neighbours are in the cover.

This branching process is recursively repeated until an

optimal solution is found. The steps are illustrated in Fig. 7.

The correctness of Steps (1) and (3) is rather straightforward

to see, but validating (2) needs a little more thought. It is

not obvious why the second branch does not only put the

vertex v into the cover but also all neighbours of its

FIGURE 6. Simple search tree for finding a vertex cover of size at

most k in a given graph. The size of the tree is upper-bounded by

O(2k).

4For a vertex v [ V, we define G 2 v to be the graph G with v and the

edges incident to v removed.

5Since some graphs can have 2k minimum-size vertex covers, a size-o(2k)

search tree for enumerating all minimum-size vertex covers would require the

use of compact solution representations as outlined by Damaschke [38] and is

beyond the scope of this work.
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neighbours. To show why this is so, assume that there would

exist a minimum-size vertex cover containing v and one of

its neighbours. Changing this set by replacing v with its

second neighbour clearly yields a minimum-size vertex

cover as well. This will be found in the second branching

case. Hence, if there should be a vertex cover smaller than

the one that contains both of v’s neighbours, then it must

contain v and it must not contain its neighbours. This

implies that all neighbours of v’s neighbours have to be part

of this vertex cover as well.

In Steps (1) and (3), the search branches into two cases.

In Step (2), each branch puts at least two vertices into V0. In

Step (3), the first branch puts one vertex into V0 and the

second branch puts at least three vertices into V0. The recursive

construction of the search tree makes it possible to analyse its

size with the help of simple recurrences. Solving them with

standard mathematical tools, we obtain that if the solution

has size k, then the size of the corresponding search tree is

bounded from above by O(1.47k).6

The currently ‘best’ search tree for VERTEX COVER is of size

O(1.28k) [25] and mainly achieved by more extensive case

distinguishing than that discussed here. Note, however, that

for practical applications it is always concrete implementation

and testing that has to decide whether the administrative over-

head caused by distinguishing more and more cases pays off. A

simpler algorithm with slightly worse search tree size bounds

may be preferable. Also, it is conceivable that—instead of

having to come up with more and more complicated branching

rules—it is possible to find a small set of simple yet generaliz-

ing branching schemes that yield good worst-case bounds.

Chen et al. [25] explore this direction for VERTEX COVER.

In combination with data reduction (see Section 3.4), the

use of depth-bounded search trees has proven itself quite

useful in practice, allowing to find vertex covers of more

than 10 000 vertices in some dense graphs of biological

origin [26]. It should also be noted that search trees trivially

allow for a parallel implementation: when branching into sub-

cases, each process in a parallel setting can further explore one

of these branches with no additional communication required.

Cheetham et al. [8] expose this in their parallel vertex cover

solver to achieve a near-optimum (i.e. linear with the

number of processors employed) speedup on multiprocessor

systems, solving instances with k � 400 in mere hours.

3.2. DOMINATING SET revisited

This section introduces a depth-bounded search tree to solve

the DOMINATING SET problem (as introduced in Section 2.3)

in planar graphs. Again, the size of the tree is upper-bounded

by a function of k.7 However, compared to VERTEX COVER it is

much harder to prove the existence of a depth-bounded search

tree here.

The problem with finding a search tree in the case of DOM-

INATING SET is the following: assume that we wanted to argue

along the same lines as we did for VERTEX COVER, that is, we

identify a set of vertices in the input graph such that at least

one of these vertices must be in a minimum-size dominating

set and then branch on putting parts of it into the dominating

set. It turns out that such a set is hard to find: in contrast to

VERTEX COVER, for example, it cannot be as simple as the end-

points of an edge—two adjacent vertices can very well be

dominated while neither one is part of the DOMINATING SET.

A further challenge with designing a search tree for DOMI-

NATING SET is that we cannot simply remove a vertex v once

it has become dominated due to one of its neighbours being

put into the dominating set: it might still be necessary to add

v into the dominating set in order to dominate other vertices.

We can only remove a vertex v once all its neighbours are

dominated and we no longer need to keep this option open.

To circumvent this problem, we consider a more general

version of DOMINATING SET [32].

ANNOTATED DOMINATING SET

INPUT: an undirected graph G ¼ (V, E) with vertices

coloured black and white and a nonnegative integer k.

TASK: find a subset S#V with at mostk vertices such that

every black vertex in V is either contained in S or has at

least one neighbour in S.

The strategy for solving DOMINATING SET is to start by col-

ouring all vertices in the input graph black. Then, in each

recursion, we take a low-degree black vertex v from the

input graph, knowing that v either dominates itself in a

minimum solution or it is dominated by one of its neighbours.

Being restricted to planar graphs, we can always guarantee the

existence of a vertex with degree at most five due to the well-

known Euler formula. Unfortunately, however, this vertex

need not necessarily be black. The solution to this lies in

data reduction!

FIGURE 7. Illustration of the branching rules that yield a search tree

of size O(1.47k) for solving vertex cover (the grey vertices are those

put into the cover).

6A more detailed walkthrough of this analysis can be found, e.g. in [3]. For

a more refined mathematical analysis of search tree sizes, multivariate recur-

rences often come into play. Eppstein [51] shows how to treat these.

7As already mentioned in Section 2.3, DOMINATING SET is most likely not

fixed-parameter tractable [1], and hence we cannot hope for such a tree when

solving DOMINATING SET in general graphs.
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Alber et al. [32] found seven (rather simple) data reduction

rules for annotated DOMINATING SET that allow to establish the

following lemma.

LEMMA 3.1. Let G be a planar graph with vertices coloured

black and white such that none of the data reduction rules

applies to it. Then there exists a black vertex with degree at

most seven in G.

This directly yields a recursive search strategy for (anno-

tated) DOMINATING SET in planar graphs.8

THEOREM 3.1. DOMINATING SET in planar graphs can be

solved by a search tree whose worst-case size is O(8k).

3.3. The CENTRE STRING problem

The string problem we study here has applications in coding

theory and computational molecular biology [53, 54]. While

we refer to it as CENTRE STRING, it is also known as CONSENSUS

STRING or CLOSEST STRING.

CENTRE STRING

INPUT: a set of k length-‘ strings s1, . . . , sk over an alphabet

S and a nonnegative integer d.

TASK: find a centre string s that satisfies dH (s, si) � d for all

i ¼ 1, . . . , k.

Here, dH (s, si) denotes the Hamming distance between two

strings s and si, that is, the number of positions where s and si

differ.

One application scenario where this problem appears is in

primer design where we try to find a small DNA sequence

called primer that binds to a set of (longer) target DNA

sequences as a starting point for replication of these

sequences. How well the primer binds to a sequence is

mostly determined by the number of positions in that sequence

that hybridize to it. While often done by hand, Stojanovic et al.

[55] proposed a computational approach for finding a well-

binding primer of length ‘. First, the target sequences are

aligned, that is, as many matching positions within the

sequences as possible are grouped into columns. Then, a

‘sliding window’ of length ‘ is moved over this alignment,

giving a centre string problem for each window position.

Figure 8 illustrates this (see [56] for details).

In this section, we present a fixed-parameter algorithm for

CENTRE STRING by Gramm et al. [57]; the parameter is the dis-

tance d. The central challenge here lies in finding a depth-

bounded search tree. Once found, the derivation of the upper

bound for the search tree size is straightforward. The under-

lying algorithm is very simple to implement and so far no

better one is known.

The main idea behind the algorithm is to maintain a candi-

date string ŝ for the centre string and compare it to the strings

s1, . . . , sk. If ŝ differs from some si in more than d positions,

then we know that ŝ needs to be modified in at least one of

these positions to match the character that si has there. Con-

sider the following observation.

OBSERVATION 3.1. Let d be a nonnegative integer. If two

strings si and sj have a Hamming distance greater than 2d,

then there is no string s that has a Hamming distance of at

most d to both of si and sj.

This means that si may differ from ŝ in at most 2d positions.

Hence, among any d þ 1 of those positions where si differs

from ŝ, at least one must be modified to match si. This can

be used to obtain a search tree that solves CENTRE STRING.

We start with an arbitrary string from fs1, . . . , skg as the can-

didate string ŝ, knowing that a centre string can differ from it

in at most d positions. If ŝ already is a valid centre string, then

we are done. Otherwise, there exists a string si that differs from

ŝ in more than d positions but at most 2d. Choosing any d þ 1

of these positions, we branch into (d þ 1) subcases, each

subcase modifying a position in ŝ to match si. This position

cannot be changed anymore further down in the search tree

(otherwise, it would not have made sense to make it match

si at that position). Hence, the depth of the search tree is upper-

bounded by d, for if we were to go deeper down in the

tree, then ŝ would differ in more than d positions from the orig-

inal string we started with. Thus, we obtain the following

theorem [57].

THEOREM 3.2. CENTRE STRING can be solved by exploring a

search tree of size O((d þ 1)d).

This search tree can be combined with the following obser-

vation that yields a simple data reduction.

OBSERVATION 3.2. Given a CLOSEST STRING instance with

k length-‘ strings and distance parameter d. If more than

k � ‘ character positions are not identical for all k strings,

then there is no solution to this instance.

FIGURE 8. Illustration from Gramm [56] to show how DNA primer

design can be achieved by solving centre string instances on length-‘
windows of aligned DNA sequences. (Note that the primer candidate

is not the centre string sought after but its nucleotide-wise

complement.).

8Ellis et al. [52] generalize Lemma 3.1 to all graphs of bounded genus.
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Combining data reduction and the search tree, we arrive at

the following corollary.

COROLLARY 3.1. CLOSEST STRING can be solved in O(k . ‘ þ
k . d . (d þ 1)d) time.

Since the term (d þ 1)d becomes prohibitively large already

for, say, d ¼ 15, it might seem as if this result is of pure theor-

etical interest. However, two things are to be noted in this

respect. First, for one of the main applications of CENTRE

STRING, primer design, d is very small (most often less than

four) and an implementation of the search tree algorithm

solves corresponding real-world instances in less than a

second [57]. Second, a detailed empirical analysis shows

that when the algorithm is applied to real-world and random

instances, it often beats the proven upper bound by far.

The algorithm is also faster than an ILP formulation of

CENTRE STRING when the input consists of many strings and

‘ is small [57].

This section and the preceding case studies of VERTEX

COVER and DOMINATING SET have shown the wide range of

occurrences of depth-bounded search trees in fixed-parameter

algorithmics. Before making an outlook for this area in

Section 3.6, the next two sections mention two useful

general techniques when designing fixed-parameter search

tree algorithms.

3.4. Interleaving search trees with kernelization

Consider the graph Gi from Fig. 9 for some positive integer i.

It is easy to verify that this graph has a minimum vertex cover

of size 4i þ 1 (e.g. take all 2i þ 1 vertices in the second row

from the top and all 2i vertices in the bottommost row).

Assume we are using the naive O(2k) search tree algorithm

to solve a VERTEX COVER instance (Gi, 4i þ 1). None of the

Reduction Rules VC1–VC3 from Section 2.1 can be applied

to this instance. In a worst-case scenario, the algorithm then

first branches for the edges that are not incident to one of

the two middle vertices, leading to a search tree of size

O(24i) ¼ O(8i).

What if we had solved the instance (Gi, 4i þ 1) while apply-

ing data reduction after every branching? Then, after branch-

ing for the first edge (any edge will do), it is easy to verify that

an exhaustive application of Reduction Rules VC1–VC3

already solves the instance—the resulting search tree has con-

stant size! This example clearly illustrates the potential power

of interleaving kernelization with search trees.

Intriguingly, the improvement obtained by interleaving

search-trees with kernelization is not limited to artificial

examples, but yields a provable acceleration of the solution

finding process. More specifically—provided that a kerneli-

zation and a search tree for a fixed-parameter tractable

problem are known—Niedermeier and Rossmanith [12]

showed that interleaving makes the cost of expanding a node

in the search tree constant from an amortized point of view,

that is, if the search tree has size O(ak) then its exploration

takes O(ak) time after an initial run of the kernelization.

While the interleaving technique allows us to amortize the

cost of expanding a node in the search tree, the main cost of

the algorithm still lies in the base a of the search tree

size. The next section discusses an automated approach to

improve base a.

3.5. Automated search tree generation and analysis

Many improvements on worst-case search tree size in the

realm of fixed-parameter algorithmics stem from extensive

case distinguishing (see, e.g. [21, 58])—Section 3.1 has

already given a taste of this. Case distinguishing is a tedious

and quite error-prone task as the arguments for correctness

become more and more complicated and the structures that

need to be considered become more complex. Hence, the ques-

tion arises whether this sort of algorithm design could be auto-

mated. The hope is that such an approach would offer the

benefits of rapid development and improved upper bounds

due to sheer computing power.

In this section, we briefly sketch an approach by Gramm

et al. [59] that makes use of computers in search tree gener-

ation and analysis when dealing with graph modification pro-

blems, that is, problems where a graph is to be modified such

that the modified graph satisfies certain structural properties.9

Search tree algorithms for graph modification problems basi-

cally consist of a set of branching rules which are usually

based on local substructures. The idea behind the automation

approach is roughly described as follows.

(1) For a constant integer s, enumerate all ‘relevant’ sub-

graphs of size s such that every input instance of the

given graph problem has s vertices inducing at least

one of the enumerated subgraphs.

(2) For every local substructure that is enumerated in Step

(1), check all possible branching rules for this local sub-

structure and select the one corresponding to the best,

that is, smallest, increase of the search tree size. The

FIGURE 9. Graph to illustrate the importance of interleaving search

trees with kernelization.

9The framework by Gramm et al. [59] appears to be the most general

approach to automated search tree generation. For satisfiability problems,

automated approaches have also been applied by Nikolenko and Sirotkin

[60] and Fedin and Kulikov [61].
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set of all these best branching rules defines our search

tree algorithm.

(3) Determine the worst-case branching rule among the

branching rules stored in Step (2), because this branch-

ing rule yields a worst-case bound on the search tree

size of the generated search tree algorithm.

In order to be computationally feasible, both Steps (1) and

(2) usually make use of further problem-specific rules, e.g.

to determine input instances which do not need to be con-

sidered in the enumeration of Step (1) because they can be

solved in polynomial time, simplified due to data reduction

rules, or dealt with by use of a clever manually developed

branching rule.

By using their automated search tree generation technique,

Gramm et al. improved a ‘hand-crafted’ algorithm for the fol-

lowing problem called cluster editing from O(2.27k
þ n3) to

O(1.92k
þ n3) for an n-vertex graph.

CLUSTER EDITING

INPUT: an undirected graph G and a nonnegative integer k.

TASK: by deleting and adding at most k edges, transform G

into a graph that consists of a disjoint union of cliques.

Recent experiments [62] used the size-2.27k search tree,

however, which is much simpler in concept than the

size-1.92k tree.

3.6. Current research and future challenges

Concluding our discussion of depth-bounded search trees in

the fixed-parameter setting, this section mentions some

future challenges that we see in this area. Compared to kerne-

lization, much more experimental work have been done in the

area of depth-bounded search trees. Besides the already men-

tioned case studies, depth-bounded search trees have been suc-

cessfully employed to improve the solvability of a number of

fixed-parameter tractable problems.

Besides in fixed-parameter theory, search tree algorithms

are studied extensively in the area of artificial intelligence

and heuristic state space search. There, the key to speedups

are admissible heuristic evaluation functions, which give

quickly a lower bound on the distance to the goal, e.g. the

number of vertices that still need to be put into the vertex

cover. The reason that admissible heuristics are rarely con-

sidered by the FPT community10 is that they typically

cannot improve the asymptotic running time [64]. Still, the

speedups obtained in practice can be quite pronounced, as

demonstrated for vertex cover [65]. Clearly, more theoretical

work combining the results on search tree algorithms from

the fields of heuristic search and fixed-parameter algorithms

is desirable.

As with kernelizations, algorithmic developments outside

the fixed-parameter setting can make use of the insights that

have been gained in the development of depth-bounded

search trees in a fixed-parameter setting. A recent example

for this is the MINIMUM QUARTET INCONSISTENCY problem

arising in the construction of evolutionary trees. Here, an

algorithm that uses depth-bounded search trees was developed

by Gramm and Niedermeier [63]. Their insight was recently

used by Wu et al. [66] to develop a (non-parameterized)

faster algorithm for this problem.

Concluding this section, depth-bounded search trees

with clever branching rules are certainly one of the first

approaches to try when solving hard fixed-parameter tractable

problems in practice. Besides the challenge to come up with

better branching rules that yield smaller worst-case bounds

on the size of the search tree, we also see some more

general future challenges in this area that are of interest to

the practitioner.

† For VERTEX COVER, we have already mentioned a new

approach by Chen et al. [25] that replaces complicated

branching rules by a smaller set of simple branching

schemes that yield the same worst-case bounds. Can

this ‘reverse engineering approach’ (i.e. moving the com-

plicated branching from the actual algorithm description

into its analysis) be applied to other problems as well?

What are the best bounds on search-tree size achievable

with as few different branching rules as possible? Here,

recent progress with the analysis of search tree algor-

ithms using multivariate recurrences [51] might help:

with this method, it was shown that some simple algor-

ithms perform in fact much better than previously

proved [67]. Also, new algorithms were developed

guided by the new analysis methods [67]; however,

there is no practical experience yet with these

approaches.

† The techniques for the automated generation of search

trees should be explored beyond CLUSTER EDITING and

extended to help find new data reduction rules and kerne-

lization schemes. A first step could be the adaption to

weighted CLUSTER EDITING, which has recently gained

some interest due to applications in computational

biology [68].

† We need to develop a deeper understanding of the order

and frequency in which certain branching rules and data

reduction attempts are made in order to improve practical

efficiency (‘make the common case first’).

† Since most search tree branchings for graph problems

are based on local structure, it can happen that

certain problem solutions are considered more

than once deeper down in the tree. What are compu-

tationally efficient ways to avoid such ‘double explora-

tions’? Certainly this has the potential to boost

efficiency, but few attempts have been made in this

direction so far.10See [63] for a counterexample.
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4. ITERATIVE COMPRESSION

Of the techniques we survey, iterative compression is by far

the youngest, appearing first in a work by Reed et al. in

2004 [69]. Although not quite as generally employable as

data reduction or search trees, it appears to be applicable to

a wide range of problems, and it has already led to significant

breakthroughs in showing FPT results.

For instance, the GRAPH BIPARTIZATION problem, that is, the

task of finding a minimum set of vertices whose deletion

destroys all odd-length cycles, has been shown fixed-parameter

tractable with respect to the number of the deleted vertices by

means of iterative compression [69]. For years this had been a

central open problem in parameterized complexity [47]. More-

over, ongoing research indicates that the corresponding algor-

ithm is competitive in practice [70]. Although currently only

a handful of results are known, iterative compression seems

promising for a wide range of parameterized problems where

the parameter is the size of the solution set.

The central concept of iterative compression is to employ a

so-called compression routine.

DEFINITION 4.1. A compression routine is an algorithm that,

given a problem instance and a solution of size k, either calcu-

lates a smaller solution or proves that the given solution is of

minimum size.

Using this routine, one finds an optimal solution to a

problem by inductively building up the problem structure

and iteratively compressing intermediate solutions. (This is

outlined in more detail in Section 4.1 for our running

example VERTEX COVER.) The main point is that if the com-

pression routine is a fixed-parameter algorithm, then so is

the whole algorithm.

The main strength of iterative compression is that it allows

to see the problem from a different angle: the compression

routine does not only have the problem instance as input,

but also a solution, which carries valuable structural infor-

mation on the input. Also, it does not need to find an

optimal solution at once, but only any better solution. There-

fore, the design of a compression routine can often be

simpler than designing a complete fixed-parameter algorithm.

However, while the mode of the use of the compre-

ssion routine is usually straightforward, finding the com-

pression routine itself is not. It is not even clear that a

compression routine with interesting running time exists

even when we already know a problem to be fixed-parameter

tractable. Therefore, the art lies in designing the compression

routine.

4.1. Iterative compression for vertex cover

As an introductory example, this section describes an algor-

ithm for VERTEX COVER based on iterative compression. The

global structure of the algorithm is as follows.

(1) Set V0  1 and C 1.

(2) For each vertex v [ V, set V0  V0 < fvg and C C <
fvg and call the compression routine for the vertex cover

instance (G[V0],C), where G[V0] is the subgraph induced

in G by V0.

(3) Output C.

Here, the compression routine takes a graph G and a vertex

cover C for G, and returns a smaller vertex cover for G if there

is one; otherwise, it returns C unchanged. Therefore, it is a

loop invariant in Step (2) that C is a minimum-size vertex

cover for G[V0]. Since eventually V0 ¼ V, we obtain an

optimal solution for G once the algorithm outputs C.

It remains to implement the compression routine. For this,

consider a smaller vertex cover C0 as a modification of the

larger vertex cover C. This modification retains some vertices

Y#C while the other vertices S: ¼ CnY are replaced by jSj 2

1 new vertices from VnC. The idea is to try by brute force all

2jCj partitions of C into such sets Y and S (Fig. 10a shows an

example). For each such partition, the vertices from Y are

immediately deleted since we already decided to take them

into the vertex cover, which covers all their adjacent edges

(Fig. 10b). In the resulting instance G0: ¼ G[VnY], it

remains to find an optimal vertex cover that is disjoint

from S. This is easy: since we decided to take no vertex

from S into the vertex cover, we have to take that endpoint

of each edge which is not in S; if both endpoints of some

edge are in S, then this choice of S cannot lead to a vertex

cover C0 with S > C0 ¼1. Note that at least one endpoint

of each edge in G0 is in S, since S is a vertex cover for G0.

Therefore, we can quickly find an optimal vertex cover for

G0 that is disjoint from S by taking every vertex that is not

in S and has degree greater than zero. Together with Y, we

obtain a new vertex cover C0 for G (Fig. 10c). For one

choice of S and Y, this can be done in O(m) time, leading to

O(2jCjm) ¼ O(2km) time overall required for a call of the com-

pression routine for vertex cover. With n iterations of the

algorithm, we get an algorithm for vertex cover running in

O(2k mn) time.

FIGURE 10. Example for the compression routine for solving

vertex cover (cover vertices are marked black).

TECHNIQUES FOR FIXED-PARAMETER ALGORITHMS 19

THE COMPUTER JOURNAL, Vol. 51 No. 1, 2008

 at M
em

orial U
niversity of N

ew
foundland on January 27, 2014

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/


4.2. Iterative compression for feedback set problems

Nearly all of the currently known iterative compression algor-

ithms solve feedback set problems in graphs, that is, problems

where one wishes to destroy certain cycles in the graph by

deleting at most k vertices or edges (see [71] for a survey on

feedback set problems).

† GRAPH BIPARTIZATION: destroy all odd cycles by deleting

vertices [69, 70].

† EDGE BIPARTIZATION: destroy all odd cycles by deleting

edges [72].

† FEEDBACK VERTEX SET: destroy all cycles by deleting

vertices [72, 73].

† FEEDBACK VERTEX SET in tournaments: destroy all cycles

in a tournament (that is, a directed graph where between

any two vertices exactly one directed edge is present) by

deleting vertices [74].

† CHORDAL DELETION: destroy all chordless cycles (that is,

induced cycles of length at least four) by deleting edges

[75].

How do the compression routines work in these cases?

Interestingly, most start with the same opening move,

namely forcing the new solution to be disjoint from the

known one (just as in our VERTEX COVER example). After

that, however, they widely diverge.

† For GRAPH BIPARTIZATION and EDGE BIPARTIZATION, it

is possible to reduce the remaining task to finding a

vertex (respectively edge) cut set, a task which can be

accomplished in polynomial time by maximum flow

techniques. We describe this in detail for EDGE

BIPARTIZATION in Section 4.3.

† For FEEDBACK VERTEX SET, data reduction rules allow to

shrink the remaining instance so it can be solved by brute

force.

† For FEEDBACK VERTEX SET in tournaments, a data

reduction constrains the possible solution such that it

can be found with a polynomial-time LONGEST INCREAS-

ING SUBSEQUENCE algorithm.

† For CHORDAL DELETION, the graph is reduced until it has

bounded treewidth, a property that allows fixed-

parameter tractable algorithms.

4.3. Iterative compression for EDGE BIPARTIZATION

We now present in detail an iterative compression algorithm

for EDGE BIPARTIZATION [72].

EDGE BIPARTIZATION

Input: an undirected graph G and a nonnegative integer k.

Task: find a size-k subset X of edges such that each odd

cycle in G contains at least one edge from X.

Being the only fixed-parameter algorithm known for EDGE

BIPARTIZATION, this algorithm is similar to the iterative

compression algorithm that Reed et al. [69] gave for GRAPH

BIPARTIZATION, yet simpler.

The global algorithm structure is almost the same as for

VERTEX COVER, except that we add edge-by-edge instead of

vertex-by-vertex. It is helpful for the compression routine to

assume that an edge bipartization set smaller than the given

edge bipartization set X is disjoint from X. Unlike with

VERTEX COVER, we do not need brute force: this assumption

can be made without loss of generality by applying a simple

input transformation (see Fig. 11). Since this transformation

preserves the parity of the length of cycles, it is easy to see

that the thus transformed graph has an edge bipartization set

with i edges iff the original graph has an edge bipartization

set with i edges. Moreover, for each edge bipartization set Y

for the transformed graph there is an edge bipartization set

of the same size that is disjoint from X, which can be obtained

by replacing every edge in Y > X by one of its two adjacent

edges.

The idea for the compression routine is to compare the two-

colourings induced by the known bipartization set and the (yet

unknown) compressed solution (Fig. 12a and b) and mark a

vertex black when the two colourings coincide, or white

when they differ (Fig. 12c). The key observation is then that

the two bipartization sets together form an edge cut between

the black and the white vertices, that is, removing them

destroys all paths from a black to a white vertex.

The following simple definition is the only remaining prere-

quisite for the central lemma for the EDGE BIPARTIZATION

compression routine.

DEFINITION 4.2. Let G ¼ (V, E) be a graph and let X#E be a

set of edges, with V(X) denoting the set < fu, vg[Xfu, vg of their

endpoints. A mapping F: V(X)! fA, Bg is called valid par-

tition of V(X) if for each fu, vg ! X, we have F(u) = F(v).

LEMMA 4.1. Consider a graph G ¼ (V, E) and an edge

bipartization set X for G without redundant edges. For a set

of edges Y#E with X > Y ¼1, the following are equivalent:

(1) Y is an edge bipartization set for G.

(2) There is a valid partition F of V(X) such that Y is an

edge cut in GnX between AF: ¼ F21(A) and BF: ¼

F21 (B).

FIGURE 11. Graph (left) with edge bipartization set X (dashed lines).

To be able to assume without the loss of generality that a bipartization

set smaller than X is disjoint from X, we subdivide each edge in X by

two vertices and choose the middle edge from each thus generated

path as the new X (right).
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How can we make use of Lemma 4.1 to obtain the com-

pression routine that, given a graph and a with respect to set

inclusion minimal edge bipartization set X of size k0, either

computes a smaller edge bipartization set Y in O(2k0 . k0m)

time or proves that no such Y exists? First, we apply the

input transformation from Fig. 11, which allows us to

assume the prerequisite of Lemma 4.1 that Y > X ¼1. We

then enumerate all 2k0 valid partitions F of V(X) and determine

a minimum-size edge cut between AF and BF until we find an

edge cut Y of size k0 2 1. This is illustrated in Fig. 13: on the

left side, we have a graph with an edge bipartization set X

(dashed lines) and a valid partition for V(X). A smaller edge

bipartization set is obtained as minimum-size edge cut

between the black and the white vertices (right). Each of the

MINIMUM CUT instances can individually be solved in

O(k0m) time with the Ford–Fulkerson algorithm that goes

through k0 rounds, each time finding a flow augmenting path

[76]. By Lemma 4.2, Y is an edge bipartization set; further-

more, if no such Y is found, we know that k0 is of minimum

size.

Analogous to the procedure we used to solve VERTEX

COVER via iterative compression, using the compression

routine m times and each time compressing a bipartization

set of size k0 � k þ 1, we obtain the following theorem.

THEOREM 4.1. EDGE BIPARTIZATION can be solved in

O(2k . m2) time.

4.4. Further remarks

So far, little research has been done on the range of applica-

bility of iterative compression (see [77] for some results). In

particular, little is known about characterizing problems

amenable to solution compression, that is, those for which

we can find a compression routine. For VERTEX COVER this

was trivial, while the EDGE BIPARTIZATION compression

routine is not quite as easy to find.

As Dehne et al. [78] point out, iterative compression can

also be used as a tool to obtain kernelizations.

First experimental results for iterative compression-based

algorithms appear quite encouraging. An implementation of

the GRAPH BIPARTIZATION algorithm, improved by heuristics,

can solve all problems from a testbed from computational

biology within minutes, whereas established methods are

only able to solve about half of the instances within reasonable

time [70]. Further, an iterative compression-based approach

for the BALANCED SUBGRAPH problem, which generalizes

EDGE BIPARTIZATION, is able to find optimal solutions to

instances for which previously only approximate solutions

could be given [79].

A particular advantage of iterative compression is the flexi-

bility in the use of the compression routine. An appealing

mode for practical purposes is to start with a suboptimal

initial solution (found by a heuristic, by an approximation

algorithm or even manually supplied), and then to repeatedly

compress this solution. We can abort the compression when

either the solution is ‘good enough’ or we are not willing to

invest any more calculation time; when waiting long

enough, we will eventually get an optimal solution. Although

the theoretical bound on the running time of this approach is

worse than with an inductive buildup of the input instance,

experiments with GRAPH BIPARTIZATION show that it is not

substantially slower in practice [70].

4.5. Future challenges

Besides the general goal to find more applications of iterative

compression, in particular outside the realm of feedback set

problems, we mention some specific challenges.

† The MINIMUM 2CNF DELETION problem (given a formula

in 2CNF, find a minimum number of clauses to delete

such that the formula becomes satisfiable) is a natural

generalization of GRAPH BIPARTIZATION; as such, it

would be interesting to try to find a fixed-parameter

algorithm for MINIMUM 2CNF DELETION based on

FIGURE 12. Comparing disjoint edge bipartization sets.

FIGURE 13. A valid partition leading to a compressed solution

(black and white: value of valid partition; grey: not in domain of

valid partition).
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iterative compression (see also [47]). Currently, the

problem is not even known to be fixed-parameter

tractable.

† Since the technique seems to work so well for feedback set

problems, it is tempting to try to apply it to DIRECTED

FEEDBACK SET, for which famously no fixed-parameter

algorithm is known. Because this is probably difficult,

the subclasses of directed graphs could be examined

first, for example, generalizing tournaments for which

an iterative compression algorithm is already known [74].

† There is a 2k . nO(1) time algorithm for DIRECTED FEED-

BACK VERTEX SET in tournaments using iterative com-

pression [74]. Recently, the related DIRECTED

FEEDBACK EDGE SET in tournaments has received

increased attention, for example, due to applications in

rank aggregation [80]. Can one find, using iterative

compression, a 2k . nO(1) time algorithm for DIRECTED

FEEDBACK EDGE SET in tournaments?

† It is known that the CLIQUE COVER problem is fixed-

parameter tractable, since it has an exponential-size

kernel [37]; however, no fixed-parameter algorithm

beyond the brute-force exploration of the kernel is

known. Iterative compression might lead to a more prac-

tical upper bound on the running time here.

5. CONCLUSION

In this survey, we have chosen to concentrate on three key

techniques of fixed-parameter algorithmics. Some further

techniques with potential for practical application are the

following.

† Colour-coding [81] is an interesting technique that helps

to find small substructures in graphs. A concrete appli-

cation in computational molecular biology can be

found in [82]; experimental and algorithm engineering

results are reported in [83].

† Tree decompositions of graphs are a very fundamental

tool of modern graph theory [5]. For graphs of bounded

treewidth, the combinatorial explosion can often be con-

fined to the parameter ‘treewidth’ (e.g. see [84] for an

efficient dynamic programming algorithm for dominat-

ing set).

† Exponential-time dynamic programming is a well-known

technique that has proven useful also in the context of

fixed-parameter algorithmics (see [85–87] for recent

examples with more or less practical flavour).

† Also enumerative techniques can be useful in fixed-

parameter solutions, e.g. in the context of finding

longest arc-preserving subsequences motivated by RNA

structure comparison in biology [88]. In addition, note

that the question of enumerating all solutions of a

particular parameterized problem is still in its infancy

[88, 89].

We hope to have fulfilled the promise made in the introduc-

tion, namely showing that the concept of FPT belongs into the

toolkit of all algorithm designers, and to have provided the

reader with enough material to raise an interest in pursuing

further studies of fixed-parameter algorithmics, we rec-

ommend to study the monographs [1–3] for a more thorough

treatment of FPT algorithmics. Further, an upcoming thesis

[90] focuses on algorithm engineering issues of FPT

methods, that is, the systematic use of implementation and

experiments to design and improve FPT algorithms.
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[78] Dehne, F., Fellows, M.R., Rosamond, F.A. and Shaw, P. (2004)

Greedy localization, iterative compression, and modeled crown

reductions: new FPT techniques, an improved algorithm for set

splitting, and a novel 2 k kernelization for Vertex Cover. Proc.
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