Arch. Math. Logic (1997) 36:321-337 Archive for .
Mathematical
Logic

© Springer-Verlag 1997

On the parameterized complexity
of short computation and factorization

Liming Cai®*, Jianer Cher?**, Rodney G. Downey-***,
Michael R. Fellowgh****

1 Department of Mathematics, East Carolina University, Greenville, NC 27858, USA

2 Department of Computer Science, Texa & M University, College Station, TX 77843, USA
3 Department of Mathematics, Victoria University, P.O. Box 600, Wellington, New Zealand
4 Department of Computer Science, University of Victoria, Victoria, B.C. V8W 3P6, Canada

Received August 1, 1994

Abstract. A completeness theory for parameterized computational complexity
has been studied in a series of recent papers, and has been shown to have many
applications in diverse problem domains including familiar graph-theoretic prob-
lems, VLSI layout, games, computational biology, cryptography, and compu-
tational learning [ADF,BDHW,BFH, DEF,DF1-7,FHW,FK]. We here study the
parameterized complexity of two kinds of problems: (1) problems concerning
parameterized computations of Turing machines, such as determining whether a
nondeterministic machine can reach an accept stakesteps (theSsHorT TM
CoMPUTATION PROBLEM), and (2) problems concerning derivations and fac-
torizations, such as determining whether a werdan be derived in a grammar

G in k steps, or whether a permutation has a factorization of lekgtiver a

given set of generators. We show hardness and completeness for these problems
for various levels of th&V hierarchy. In particular, we show th&tiorT TM
CoMPUTATION is complete foW[1]. This gives a new and useful characteriza-

tion of the most important of the apparently intractable parameterized complexity
classes.

* Research supported by an Engineering Excellence Award fromsT&»&a M University

** Research supported by NSF grant CCR-9110824

*** Research supported by Victoria University IGC and by the United States / New Zealand Co-
operative Science Foundation under grant INT 90-20558 and the New Zealand Marsden Fund for
Basic Science
**** Research supported in part by the National Science and Engineering Research Council of
Canada
Mathematics Subject ClassificatioB8Q05, 68Q15, 68Q25, 68Q50
Correspondence tdR.G. Downey

322 L. Cai et al.

1 Introduction

The central issues on which the theory of parameterized computational complex-
ity focuses are rooted in the following general observations concerning compu-
tational problems.

e Many important natural problems have input that consists of two or more
items. For example, the familiar probleni3aNDWIDTH, MIN CUT LINEAR
ARRANGEMENT, VERTEX COVER and DOMINATING SET all take as input

a graphG and a positive integek. So it is natural to consider the relative
contributions of the different parts of the input to the complexity of the problem.

e There is a large and growing body of results of the following qualitative
sort: there is a constant such for every fixed “parametek, the problemi7

is solvable in timeO(n®), with o independent ok. For example Min Cut
LINEAR ARRANGEMENT and VERTEX COVER are solvable in time linear in
the number of vertices dB for every fixedk. The algorithmic techniques used
to prove suchixed parameter tractabilityesults are in some cases interesting
and distinctive (for example, well-quasiordering).

e The fact that a probleni! taking as input two itemg andk is complete for
NP (or PSPACE or EXPTIME ...) tells usnothing about the fixed-parameter
tractability or intractability ofI1.

e For many natural problems, a small range of parameter values may serve
important applications.

e Many natural problems involve a “hidden parameter.” Elucidating the contribu-
tion of this parameter to the complexity of the problem may illuminate why the
problem is “easier to solve in practice” than one might expect from traditional
complexity analysis. An example of this phenomena is exhibited by the problem
TypPE INFERENCE IN ML [HM,DF6]. Engineering practice may introduce (and
fix) a parameter. This can render the complexity of a prokdesierthan one de-
sires (for example, in cryptography [FK]). The familiar practice of “coping with
NP-completeness” by restricting the input can often be conveniently described
by a parameterization (for example, by making the parameter the treewidth of
the input for a problem concerning graphs).

e For many familiar parameterized problems the difference between fixed-
parameter tractability and apparent intractability is very much akin to the ap-
parent difference we observe between problems which af@ and problems
which areNP-complete. For example, while we can determine whether a graph
has a vertex cover of sizeor a cutwidthk layout in linear time for each fixek,
the best known algorithms for determining whether a graph has a dominating set
of sizek, or a bandwidttk layout, require timeD(n**1) and are based essentially
on a brute force examination of possible solutions. This is strongly reminiscent
of the current situation for manMP-complete problems.

In a recent series of papers, a framework has been introduced for exploring,
gualitatively, the central phenomena of fixed-parameter tractability for parame-
terized problems [ADF,CCDF,DF1-6]. We sgyalitative noting that this is all

On the parameterized complexity of short computation and factorization 323

that a complexity theory of this sort (includifgP-completeness) can do. In the
more familiar theory oNP-completeness, the central phenomena and the model
of computational feasibility, igpolynomial timecomputability. No one would
seriously argue, however, that a polynomial time complexitn®¥f represents
tractability in any practical sense. A similar statement holds for fixed-parameter
tractability.

In traditional complexity theory (such d@$P-completeness), the input to a
computational problem is viewed as a single unstructured object — all that mat-
ters is its size. Parameterized computational complexity introduces fundamentally
the distinction between “more important” and “less important” parts of problem
input, and allows us to investigate how different parts contribute to the overall
computational complexity of the problem.

Our main results concern the following two problems about resource-bounded
Turing machine computations; informally, these study the powek-tfne and
k-spacefor nondeterministic machines.

SHORT TM COMPUTATION

Input: A nondeterministic Turing machinkl, a wordx and a positive integer
k.

Parameter: k

Question: Is there an computation dfi on inputx that reaches an accept state
in at mostk steps?

CompacT TM COMPUTATION

Input: A nondeterministic Turing machinkl, a wordx and a positive integer
k.

Parameter: k

Question: Is there an accepting computationMf on inputx that visits at most
k tape squares?

Our main result, Theorem 1, shows thattorRT TM COMPUTATION iS
complete forw|[1], and will be seen to provide a new and useful characteri-
zation of this most important of the parameterized complexity classes. (“Most
important,” becaus&V[1]-hardness is presently the minimum available demon-
stration of likely fixed-parameter intractability.) Concretely, Theorem 1 shows
that SHorT TM COMPUTATION is fixed-parameter tractable if and only if the
familiar (and apparently resistanf)LIQUE problem is fixed-parameter tractable.

Theorem 2 shows that tHespace analogCoMpPACT TM COMPUTATION,
is hard for the complexity clasa/[P].

In the next section we review the basics of parameterized computational
complexity. In Sect. 3 we sketch the proofs of the main theorems. In Sect.4 we
address related problems about grammars, Post systems, and square tiling. In
Sect. 5 we consider some more distantly related short factorization problems in
permutation groups and monoids.

324 L. Cai et al.

2 Parameterized computational complexity

The formal framework for our study is established as follows.

Definition. A parameterized problers a setlL C X* x X* where X' is a fixed
alphabet.

In the interests of readability, and with no effect on the theory, we consider
that a parameterized probleimis a subset of. C X* x N. For a parameterized
problemL andk € N we write Ly to denote the associated fixed-parameter
problem K is the parameter)y = {x|(x,k) € L}.

Definition. We say that a parameterized probleris (uniformly) fixed-parameter
tractable if there is a constantr and an algorithm® such that® decides if
(x,k) € L in time f (k)|x|* wheref : N — N is an arbitrary function.

Definition. Let A,B be parameterized problems. We say thats (uniformly
many:1)reducibleto B if there is an algorithm? which transforms X, k) into
(X, g(k)) in time f (k)|x|*, wheref g : N — N are arbitrary functions and is
a constant independent kf so that , k) € A if and only if (x’, g(k)) € B.

It is easy to see that i reduces tB andB is fixed parameter tractable then
so too isA. Note that if P = NP then problems such as Minimum Dominating
Set are fixed-parameter tractable. Thus a completeness program is reasonable.

The classes of parameterized problems that we define below are intuitively
based on the complexity of the circuits required to check a solution, or alter-
natively the “natural logical depth” of the problem. (See also [CC1-2], [KT]
and [PY] for different views of this issue in terms of alternating logarithmically
bounded Turing Machines and finite model theory.)

We first define circuits in which some gates have bounded fan-in and some
have unrestricted fan-in. It is assumed that fan-out is never restricted.

Definition. A Boolean circuit is ofmixed typeif it consists of circuits having
gates of the following kinds.

(1) Small gatesnot gates,and gates andr gates with bounded fan-in. We will
usually assume that the bound on fan-in is 2 dod gates andr gates, and 1
for not gates.

(2) Large gates And gates andDr gates with unrestricted fan-in.

Definition. The depthof a circuit C is defined to be the maximum number of
gates (small or large) on an input-output pathdn The weft of a circuit C is
the maximum number of large gates on an input-output patb.in

Definition. We say that a family of decision circuiks hasbounded deptif there
is a constanh such that every circuit in the famillf has depth at modt. We
say thatF hasbounded wefif there is constant such that every circuit in the
family F has weft at most. Theweightof a boolean vectox is the number of
1's in the vector.

On the parameterized complexity of short computation and factorization 325

Definition. Let F be a family of decision circuits. We allow th& may have
many different circuits with a given number of inputs. Fowe associate the
parameterized circuit problety = {(C, k) : C accepts an input vector of weight

k}.

Definition. A parameterized problerh belongs tow(t] if L reduces to the pa-
rameterized circuit problerbr ny for the family F (t, h) of mixed type decision
circuits of weft at most, and depth at mogt, for some constartt.

Definition. A parameterized problerh belongs toW|[P] is L reduces to the
circuit problemLg, whereF is the set of all circuits (no restrictions).

Definition. We designate the class of fixed-parameter tractable probiéiiis
The above leads to an interesting hierarchy
FPT CW[1] CW[2] C--- C WI[P]

for which a wide variety of natural problems are now known to be complete or
hard for various levels (compendiums can be found in [DF2,4,7]).

It should be emphasized that there is no easy correspondence between mem-
bership or hardness in any of these parameterized complexity classbiand
PSPACEcompleteness (etc.) for the corresponding “unparameterized” problems.
For example, in [ADF] problems concerningmove games are studied, all of
which arePSPACEcomplete in unparameterized form; some of these turn out
to be fixed parameter tractable, and others to be hard for various classes of the
W hierarchy. A contrasting example can be found in [DEF] where it is shown
that VAPNIK-CHERVONENKIS DIMENSION is complete folW[1]; the unparam-
eterized form of this problem is probably of difficulty intermediate betwPen
andNP (see [PY]). Similarly,TOURNAMENT DOMINATING SET, which can be
solved in timeO(n'°9") and is unlikely to beNP-complete [PY], can be shown
to be complete (in the natural parameterized form)d2] (see [DEF]).

3 k-Resource bounded turing machine computations

Theorem 1. SHORT TM COMPUTATION is complete for W1].

Proof. We give the proof at a high level. The formal details are laborious but
straightforward. To show hardness #M#[1] we reduce fromCLIQUE, which is
shown to be hard fow/[1] in [DF3]. Let G = (V,E) be a graph for which we
wish to determine whether it containskeclique. We shown how to construct a
nondeterministic Turing maching that can reach an accept statekin= f (k)
moves if and only ifG contains &-clique. The Turing machin# is designed

so that any accepting computation consists of two phases. In the first phase,
nondeterministically write& symbols representing vertices &f in the firstk
tape squares. (There are enough symbols so that each vef®isakpresented

by a symbol.) The second phase consists of mal(f;jgscans of thek tape

326 L. Cai et al.

squares, each scan devoted to checking, for a pair of positignghat the
vertices represented by the symbols in these positions are adjacéntBach
such pass can be accomplished by employ@(gV |) states inM dedicated to
theij ™ scan.

In order to show membership W[1] it suffices to show how th&HORT
CoMPUTATION problem for a Turing machink! = (X, Q, do, 6, F) and positive
integerk can be translated into one about whether a cir€uaccepts a weight
k’ input vector, whereC has depth bounded by sorméndependent ok and the
Turing machineM), and has only a single large (outpat)d gate, with all other
gates small. We arrange the circuit so that khenputs to be chosen to be set
to 1 in a weightk’ input vector represent the various data: (1) ithetransition
of M, fori =1 ...k, (2) the head position at time (3) the state oM at time
i, and (4) the symbol in squajeat timei for 1 <i,j < k. Thus we may take
k' = k? + 3k. In order to force exactly one input to be set equal to 1 among a
pool of input variables (for representing one of the above choices), we can add
to the circuit, for each such pool of input variables, and for each pair of variables
x andy in the pool, a small “not both” circuit representingx VvV —y). It might
seem that we must also enforce (e.g. with a lamggate) the condition, “at least
one variable in each such pool is set true” — but this is actually unnecessary,
since in the presence of the “not both” conditions on each pair of input variables
in each pool, an accepted weidtitinput vectormust haveexactly one variable
set true in each of thk’ pools. Letn denote the total number of input variables
in this construction. We have in any case= O(k|6| + k? + k|Q| + k2| X|).

The remainder of the circuit encodes various checks on the consistency of
the above choices. These consistency checks conjunctively determine whether
the choices represent an acceptiwgtep computation by, much as in the
proof of Cook’s theorem. These consistency checks can be implemented so that
each involves only a bounded numberof the input variables. For example,
we will want to enforce that if five variables are set true indicating particular
values of: (1) the tape head position at tiine 1, (2) the head position at time
i, (3) the state at timeg, (4) the scanned symbol at timeand (5) the machine
transition executed at timie then these indicated values are consistent with
Thus withO(n®) small “checking” circuits of bounded depth we can insure this
sort of consistency. In general, we will ha@n®) such “checking” circuits for
consistency checks involvirgvalues. All of the small “not both” and “checking”
circuits feed into the single large outpammd gate ofC. The formal description
of all this is straightforward. O

We remark that Theorem 1 depends crucially on there being no bound on
alphabet size or on the number of nondeterministic transition possibilities out
of a state, in the definition of the problem. If we restrfiiorT TM CowMm-
PUTATION to TM’s with |X| bounded by some constant then the number of
configurations is bounded Hy*|Q|k and the problem becomes fixed parameter
tractable. A similar statement holds for TM’s having a bodndn the number
of nondeterministic transition possibilities for any state.

On the parameterized complexity of short computation and factorization 327

Theorem 2. CompAacT TM CoOMPUTATION is hard for W[P].

Proof. To show that the problem is hard fa@¥[P] we reduce from the problem
MoNOTONE WEIGHT Kk CIRCUIT SATISFIABILITY that has been shown to be
complete forW[P] in [DF4]. Let C be a circuit for which we wish to determine
whether there is an input vector of weigktaccepted byC. We may assume
that each logic gatg of C has two inputs. In time polynomial ifC| we can
describe a Turing machind sketched as follows.

M has an alphabet consisting of one letter for each inpu€toand the
operation ofM consists of two phases. In the first phabk,makesk moves
nondeterministically, writing down in the firgt tape squarek symbols which
represenk inputs toC set to 1. In the second phase (and visiting no other tape
squares)M checks whether the guess made in the first phase represents a vector
accepted by the circuft.

The key point is that we can structure the transition tablslab accomplish
this, with the size of the table polynomial |€|. To do this, we make two states
qf,p andql,,,, for each connection (dine) | of the circuitC. Let g be anand
gate ofC, let| be an output line off and suppose the input lines to the gate
arel; andl,. We include in the transition table féd transitions fromgy,, to g,
from glt,, t0 O, and fromg2,,, 10 gy, The significance of being a state
Ulown IS that this represents a value of 1 for the linas computed b on the
input guessed in the first phase. The sqé,gemight be viewed as a state gfiery
about the value of for the circuitC on the input guessed in the first phase. Note
that the three transitions described above for dhd gate ¢ thus enforce that
Obown Can be reached only i, . and 2, can be reached. The appropriate
transitions for aror gate will differ in the obvious way, i.e., we arrange that the
stateq),,,, can be reached if either oft . or gz, can be reached.

If | is an input line to the circuiC, then we encode in the state table fdr
a “check” (involving a scan of th& tape squares) to see if the corresponding
input symbol was written during the first phase of computation. The second phase
begins in the statql'f,;t wherelyy: is the output line ofC, and the only accept

state isqi,,. O

4 Grammars, post systems and tiling

In this section we consider the parameterized complexity of the following clas-
sical problems about derivations of strings of symbols.

SHORT DERIVATION (FOR UNRESTRICTED GRAMMARS)

Instance: The three pieces of information:

(1) A grammarG = (N, X, I1,S), whereN is a finite set of “nonterminal sym-
bols,” X is a finite set of “terminal symbols,II is a finite set of “production
rules” of the form & —) with o, 3 € (N U X)*, andS € N is the “start
symbol.”

(2) Awordx € X*.

328 L. Cai et al.

(3) A positive integelk.

Parameter: k

Question: Is there aG-derivation ofx of lengthk? That is, is there a sequence
of wordsxg, ..., X with x; € (N U X)* for i =0,...,k, that satisfies the require-
ments:

(1) % =S,

(2) x« =%, and

(3) for eachi =1, ...,k there is a production rule; = (3 — v) € II such that
Xi—1=aB6 andx = avy6?

We note in passing that if the above problem is restricted to grammars hav-
ing production rules in which the left hand side always consists of a single
nonterminal symbol (termed @ontext-free grammay then it is fixed-parameter
tractable.

SHORT PosST CORRESPONDENCE PROBLEM

Instance: A Post systend] and a positive integek, where aPost systergonsists
of a finite alphabet” and two sequences = (o, ..., an) @and g = (51, ..., Gn)
Parameter: k

Question: Is there a lengttk solution for I7? That is, is there a sequence of
integersiy, ..., ik (not necessarily distinct) such that

ail"'aikzﬁil"'ﬁik ?
Lemma 1. CLIQUE reduces tdSHORT DERIVATION.

Proof. Let G = (V, E) be a simple graph, arkl a positive integer. We describe

a grammars = (N, X, I'S), a wordx € X*, and a positive integet’ = f (k)

such that the start symb8l derivesx in k’ steps if and only ifG has ak-clique.
The terminal symbols of the grammar are

Y={#lu{u:ueV}iuil}
The nonterminal symbols are
N =N; UN; UN3 U Ny

where
Nl = {Sa Sla M 7W7Z}

Np={X :1<i <k}
Ns={R[i,j]l:1<i <k, 0<j <k-1}

N4:{T[i,u,j]:19 <k uev,1<j< (';)}

The start symbol isS.
The target stringk € X* is

X = #3(;)| k+2

On the parameterized complexity of short computation and factorization 329

where the exponents indicate symbol repetition.
The set of productiong’ is

I'=JulU.---Ulr

In the formal description of some of these production rule sets (in particiijar,
I'7 and I's) we make reference to the following sets of indices. &atenote the

sequence of symbols in the séf = {o[i,j]: 1 <i <] <k} in increasing

lexicographic order. Thus the length of the sequends (§). Lets denote the
r'h symbol of the sequence. Fori = 1,...,k define

J={r:s=o[i,j], 1<j <k}

¥ ={r:s=o0[j,i], 1<j <k}

" _ k) 1
w1 (§)}-aum

Thus fork = 4 we haveos = o[1,2]0[1,3]o[1,4]o[2, 3]0[2,4]0[3,4], I =
{1,2,3},3/ =0,3]' ={4,5,6}, I ={4,5}, 3; = {1} andJ) = {2,3,6}.

Intuitive Overview. Let S denote the starting symbol for the grammar. The
initial production rule (the only one that can be applied) is

S — S'RIK, 1] - - - R[L, J#X[LIX[2XLIX[3J# - - - #X[K — 1]X[K]Z

There are productions by which the pairs of symbxIs]X[j] may produce

a pair of terminal symbols representing an edge of the graph; this represents
in some sense a “guess” aboukalique in G. Note that there aré'g) pairs
corresponding to thé'g) edges of &-clique. For such a guess to be consistent,

it must be verified that each occurrence of the syn¥pl produces the same
guessed vertex (as the endpoint of a guessed edgeRBmel T symbols make

this consistency check by “commuting across” the intermediate string. The last
index of these symbols functions as a counter that keeps track of which edge of
the potential clique is being checked. TRg, %] (“read”) symbols commute until

the first occurrence of thid" vertex (produced by[i]) of the potentiak-clique

is encountered. At this point the symtRJli , x] is commuted past the edge of this

first occurrence, but transformed intd@ g“test”) symbol that records the identity

of the i™ vertex (as the second component in the indexing of the symbol). As
this symbol continues to commute across the portion of the string corresponding
to the guessed edges, there are three possibilities that arise with respect to next
guessed edge of the commute: (1) the first endpoint of the guessed edge should
correspond to the recorded vertex of the symbol, (2) the second endpoint of
the guessed edge should correspond to the recorded vertex of the symbol, or
(3) neither endpoint should correspond to the recorded vertex of the symbol.
The positions in the sequence @ﬁ guessed edges corresponding to these three
possibilities are indexed by, J' and J”, respectively, and the corresponding
sets of production rules ar€s, I, and I'3. The “read and test” nonterminal
symbols that implement the consistency checking can only be eliminated from

330 L. Cai et al.

the string by successfully commuting to tdesymbol on the right end of the
string. In the final phase of a successful derivation of the target skitige
symbol S’ must also commute across in order to be eliminated at the right end.
As it commutes, it replaces the guessed vertices with the place holding symbol
#.

The details of the production rules of the grammar are as follows.

I = {S— S'RK, 1] - - R[L, 1J#Xq Xo#tX1 Xa#t

<o XK HX KX XK gt - - - BX 1 X Z }
I = {XX —uv:1<i<j<k, uwekE}
I3 = {R[1,1J#uv — #uvT[1,u,2] : uv € E}
Iy = {R[i,j#uv — #uoR[i,j +1]:2<i <k, 1<j <i -2, uw € E}
Iy = {R[i,jJ#uv — #uvT[i,v,j +1]:2<i <k, j=i -1, uv € E}
Is = {T[i,u,jl#uv — #uvT[i,u,j +1]:1<i <Kk, j € J, uv € E}
Iy = {T[i,v,jJ#uv — #uoT[i,v,j +1]:1<i <k, j € J/, uv € E}
I'g = {T[i,u,jl#xy — #yT[i,u,j +1]: 1<i <k, j € J'}
Iy = {T [i,u,(Z)+1]Z—>ZM 1<i<k-1, uev}
I = {T {k,u, (';) +1} Z —>WM}
Iy = {S'#uv — ###S' 1uv € E}
I, = {SWMK — |2}

It remains only to specify the number of steps for the derivation:

oo ean[()

Half of the correctness argument for the reduction is straightforwaré.Has
a k-clique then a derivation of of lengthk’ can be written down by following
the sketch above, noting that all of the necessary means for commuting symbols
from left to right are available. For the other half of the argument, it is easy to
see that the necessary first step of the derivation (since it is the only one possible)
creates a situation where the tResymbols (or thel symbols into which they
are transformed) must be commuted across the string. The key point is that this
is possible only if the guessed edges are consistent in providing evidence of a
k-clique inG. O

Lemma 1 together with the results of [DF3] shows tSEORT DERIVATION
is W[1] hard. Recall that a@ontext-sensitivgrammar is one where the produc-
tions a — [satisfy the length restrictiofr| < |8| and«, 3 # e. Our argument
for Lemma 1 actually shows th&HoRT DERIVATION remainsW/[1] hard for
this special case. We next establish membershiyy/[a].

On the parameterized complexity of short computation and factorization 331

Lemma 2. SHORT DERIVATION is in W[1].

Proof. To show thatSHORT DERIVATION belongs tow[1] we will use Theo-
rem 1. That is, we will describe (at a high level) how to reduce the problem of
determining whether a word can be generated ik steps from a given (unre-
stricted) grammaG = (N, X, 11, S), to the problem of determining whether a
nondeterministic Turing machine can reach a halting configuratidifkinsteps.

The computation of the Turing machine is organized in two phases. The
first phase nondeterministically guesses a description ofktbtep derivation
of x. (This description can be recorded By(k?) symbols written in as many
tape squares; we describe how this can be accomplished below.) The second
phase consists of a deterministic computation that checks whether the guessed
derivation ofx is valid.

Suppose the sequengg ..., xx corresponds to k-step derivation ok in the
grammarG in the sense that: (X = S is the start symbol o6, (2) xx = x, and
(3) foreachi, i =1,....k, X can be obtained frorg _1 by the application of the
production rulea; — (. For any wordw € (N U X£)* let w[j] denote thegj™
symbol ofw, and fors <t let w[s, t] denote the substring af consisting of the
symbolsw[s] - - - w[t]. Thus for the production rule;, — G, we write 5;[s, t] to
denote the substring of the yiel§§ consisting of thes™ throught™ symbols.

We employ an alphabet with a distinct symbol for each possible substring
0[S, t] of the yield of a production rule. Note that the number of symbols required
is bounded by a polynomial in the size of the description of the gran@naret
I" denote this alphabet.

The description of thé-step derivation ok consists of, foi =1,... k:

(1) A factorization ofx;

Xi = Bi[S1, ti] - Bin[Sims il

represented by symbols éf.
(2) The production ruley; — G; that yieldsx from x; _;.
(3) The substring of symbols of (1) far_; that represents the symbols consumed
in the application of the production rule identified in (2).
(4) The substring of symbols of (1) for that represents the symbols yielded by
the application of the production rule identified in (2).

We can describe appropriate factorizations for the striqgs., X in more
detail as follows. To each symbol of each of the strings..,x € (N U X)*
we can associate me of productionthe indexi of the stringx in which the
symbol first appeared (i.e., was in the yield of the application of the production
rule that produced; from x;_;), and atime of consumptiarthe indexj (if one
exists, otherwise sayo) such that the symbol is consumed by the application
of the production rule that yieldg+; from x;. Say that two symbols ix; are
equivalentif: (1) they are adjacent ix;, and (2) they have the same times of
production and consumption. The relevant factorizatiorxois then given by
the equivalence classes. Each factor can be expressed by a syi®o] € I.

332 L. Cai et al.

By an easy induction, the factorization for eaghhas a representation over the
symbols ofI" of length at most 1 + X(— 1).

It follows from the definition of the equivalence relation thaxifis produced
from % _; by the production ruley, — G;, thenq; is represented by a substring
of the symbols ofl" that represent the factorization xf ; and; is represented
by a substring of the symbols df that represent the factorization xf

The second computational phase for the Turing machine consi&tslefer-
ministic checks, with thé®™ check verifying that the guessed information of the
first phase relevant to the derivation xffrom x; _; is consistent. It is easy to
see that each such check can be accomplished(lby moves through a state
space of polynomial size, for an appropriately chogéqg. 0O

As a consequence of Lemmas 1 and 2 and Theorem 1 we have proved:
Theorem 3. SHORT DERIVATION is complete for W1].
We next consider the complexity 8HORT POsST CORRESPONDENCE.

Lemma 3. SHORT PosT CORRESPONDENCE reduces toSHORT TM CoM-
PUTATION.

Proof. Given an instancel(, k) of the SHORT POST CORRESPONDENCE prob-

lem, we can easily express the question in terms of whether a particular Turing
machine has &’-step accepting computation, f& determined by an appro-
priate function ofk, as follows. Consider a machirid that computes in two
phases, over an alphabet that includes one symbol for each pair of strings in the
Post system, and one symbol for each of the positive integersrh wherem

is a bound on the total number of symbols (in the strings of the Post system)
for any solution. (Clearlyn < k|II|.) In the first phaseM writes on X tape
squares indicating (nondeterministically)yaessed solutioincluding the infor-
mation: (1) what Post pair is thé" factor fori = 1,....k, (2) on what symbol
positions thei" factors begin (in the two concatenated strings). In the second
phaseM conducts a number of “checks”, each consisting of: (1) a scan of the
guess recording in the resulting sta, e.g., that thé™ factor is §,y;) and
begins in the first component in symbol positionand that the next factor is
due to begin in symbol positios. There is a transition out af in the transition
table forM if and only if the information recorded in the staies “valid”, i.e.,

s =r +[x|. The number of states required for this checlOi§7|3). It is not

too hard to see thatkchecks of this sort are enough to insure that the guessed
starting positions of the factors are consistent. Similarly, it is necessary to make
k? checks that each guessed (factor + starting position) in the first component is
compatible with each (factor + starting position) in the second component. That
is, we must insure that this information does not imply any mismatched symbols
in the two solution strings for the Post problem. A successful check will make
f (k) moves, wherd is an appropriately chosen function lof O

Theorem 4. SHORT PosT CORRESPONDENCE is complete for Wi].

On the parameterized complexity of short computation and factorization 333

Proof. Lemma 3 shows that the problem belongsVi§1]. To show that it is
hard forW[1] we compose the reduction of Lemma 1 (frdiiLiQUE) with the
reduction of Theorem 4.2 of Davis [Da] (attributed to an unpublished manuscript
of Floyd). In general, the second reduction of this composition doésonstitute

a parameterized reduction 8f10ORT DERIVATION to SHORT P0OST CORRE-
SPONDENCE. For example, the reduction is only defined for context-sensitive
grammars. However, the image of the reduction fr@miQuE described by
Lemma 1 consists of instances of thaorT DERIVATION problem where: (1)
the grammar is context sensitive, and (2) the word to be derivekl steps
has length bounded by a function kf Under these restrictions, the reductions
described by Davis’ Theorem 4.2 is indeed a valid parameterized reduction.

We next consider the complexity of tiling small regions; the problem is de-
fined as follows (see [GJ]).
SQUARE TILING
Instance:SetC of colors collectionT C C* of tiles (where(a, b,c,d) denotes
a tile whose top, right, bottom and left sides are colcgield, c, d respectively),
and a positive integek.
Parameter: k
Question:ls there a tiling of & x k square using the tiles if, i.e., an assignment
f of atile A(i,j) € T to each ordered pair,j, 1 <i <k, 1<j <Kk, such that
(1) if f(i,j) = (a,b,c,d) andf (i +1,j) = (a’,b’,c’,d’), thena’ =c, and (2) if
f@i,j +1)=(a',b’,c/,d’) thenb=d'?

Theorem 5. SQUARE TILING is complete for W1].

Proof. Membership inW[1] is straightforward. Given an instance of the tiling
problem as defined above we can create a Turing madiinthat reaches a
halting configuration irk’ steps (wherek’ is an appropriate function df) as
follows. In the first phase of computatioh] writes ontok? tape squares non-
deterministically a choice of tiles. In the second phase of computMionakes
2k(k — 1) passes, each pass dedicated to checking the compatibility of the tiles
chosen for two adjacent positions in thex k square. In any given pass, the first
recorded tile of the pair is “remembered” as state information.

To show that the problem is hard f@f[1] we reduce from th&V[1]-complete
problem CLIQUE in two steps. The most important step is the reduction of
CLIQUE to the problem of tiling &; x k, rectangular region. The second and
easier step is to reduce the rectangular tiling probleridoArE TiLING. We
address the easier step first. Suppkse k.

Let T denote the set of tiles over the set of col@sWe describe how to
construct a set of tile3’ over a set of color€’ such that &; x k, region can
be tiled fromT if and only if ak’ = k, square region can be tiled frofi.

Supposez ¢ C. We may takeC’ = C; U C, where

Ci=Cx {07 vy kz}

C2 = {Z} X {oa ey k2}

334 L. Cai et al.

The set of tilesT’ is the unionT’ = T; U T, U Tz where

T1 = {{(@i),(b,j +1).(c,i +1),(d,j)):0<i <k —-1,0<]j
<k —1{a,b,c,d)eT}
T2 = {{(@ k), (z,j +1),(z, ki +1),(z,j)): 0<j <k —1,a€C}
T3 = {{(z,i),(z,] +1),(z,1 +1),(z,})) ke +1<i <k —-1,0<] <k — 1}

The basic idea is that the tiles @6 and Tz provide for additional rows of
padding to fill out thek, x ko square. The verification thatla x k, rectangular
tiling with tiles from T yields aky, x kp square tiling with tiles fromT’ is
straightforward and left to the reader.

Now suppose there iska x k, square tilingf with tiles fromT’. The second
components of th&€’ colors of the tiles inT’ forces the tileA(i,j) =f(i,j) to
have the form{(x1,i — 1), (X2,]), (Xs,i), (Xs,j — 1)), for 1 < i,j < kp. By the
definition of T1, and forgetting the second components of the coforaust also
describe a tiling of thég x kp rectangle in the firsk; rows with tiles fromT.

We next argue thaf’LIQUE can be reduced to the rectangular tiling problem.
Let G = (V,E) andk be an instance o€LiQUE. We will describe a set of
colorsC and a set of tiled that can tile ak; x ky rectangle if and only ifG
has ak-clique, wherek; = k andk, = (‘;) We will consider the columns of the
ki x ko rectangle as indexed hy in lexicographic order. Lefiy denote the set
of (';) ordered pairsr(;s) with 1 <r < s < k. Let JJ denoteJx augmented
with the single additional element 0. ConsidgT to be linearly ordered by the
lexicographic ordering inherited frody together with taking O to be the minimal
element. Fora € J let pre(a) denote the immediate predecessorcoin the
ordering ofJy.

The set of colors i€ = C; U C, where

Ci=J xV
C,={0,...k} xE
The set of tiles is
T = {{(i —1,uv),(pre(er), w), (i,uv), (e,w)) :1<i <k,uv e E,weV,

a=(r,s) € J,
with (w=uif i =r)and w=v if i =s)}

In discussing tiling it is useful to have the notion of the sequence of colors
in a row or column. Given a valid tiling of the k; x k, rectangle, write

f£G0,5) = (f(i,]),R20,1), f3(0,), fai 1))

That is, f; describes the top color assignmefatdescribes the right side color
assignment, etc. Define tlsequence of colors of th&'irow to be the sequence
of lengthk; + 1:

fa(i, 1), f2(i, 1) =14(i,2),f2(i,2) =14(i, 3), ..., fa(i , ke — 1) =T4(i, ke), F2(i , ky)

On the parameterized complexity of short computation and factorization 335

Similarly define the sequence of colors of a column.

Claim 1.1f there is ak-clique in G then thek; x k» rectangle can be tiled from
T.

Proof. Let v, ..., vk be the vertices of the clique. We describe a tiling by describ-
ing the row and column color sequences. In tierow the sequence of colors
is:

(07 Ui)v ((17 2)7 Ui)7 ((-L 3)a Ui)a ooy ((1a k)a Ui)a ((27 3)7 Ui)7 ooy ((k - 1» k)a Ui)
In the column indexed by = (r, s) the sequence of colors is:
(07 Ur US)7 (17 Ur US)7 (27 Ur US)7 ey (k7 Ur US)

From this point, it remains only to check that these sequences can be realized by
tiles of T, which we leave to the reader.

Claim 2. If the k; x ky rectangle can be tiled from thenG has ak-clique.

Proof. Let f denote the tiling. By forgetting the first components, we may refer to
the colors ofC; asrepresentinga vertex, and we may similarly refer to the colors

of C, as representing an edge. First note that in any valid tiling flome must

have the same vertex represented in all of the colors of a row sequence, simply
because every tile has the same vertex represented on its sides. Similarly, the
same edge is represented in the sequence of colors of any column. Furthermore,
the first components of the sequence of colors in a column must be increasing
and is thus forced to be; @, 2, ..., k. A similar statement holds for the sequence

of colors in a row. Writey; to denote the vertex represented in rovieti < j

and consider the column indexed hyj(). It is straightforward to check that the
definition of T forces the edge represented by this column tovhg, which
implies that they; are distinct and pairwise adjacent@ 0O

5 Short algebraic factorizations

The following problem clearly belongs W[P].
PERMUTATION GROUP FACTORIZATION

Instance: A setA of permutationsA C §,, andx € S,.
Parameter: A positive integerk.

Question: Doesx have a factorization of lengtk over A?

Theorem 6. PERMUTATION GROUP FACTORIZATION is hard for W[1].

Proof. We reduce from the parameterized problémerreEcT CODE that is
shown to be hard foW[1] in [DF3]. Let G = (V,E) be a graph of orden
for which we wish to determine whether there is a perfect code ofksiteat is,
a set of vertice&/’ C V of cardinalityk with the property that for every vertex
ueV, |V NN[u] =1.

Let n’ = (k + 1)n. We describe how to produce an equivalent instance of
PERMUTATION GROUP FACTORIZATION problem forS,..

336 L. Cai et al.

View n’ as divided inton blocks of sizek + 1, with these blocks in 1:1
correspondence with the vertices®f Let v denote a cyclic permutation of the
elements of a block. Our sét consists ofn permutations, one for each vertex
of G. For a vertexu and with N[u] denoting the solid neighborhood of in
G, let a, denote the element &, which acts on the blocks corresponding to
v € N[u] according toy, and which is the identity map on all other blocks.

The permutatiorx to be factored consists of the permutatipron each of
the n blocks.

The correctness of the reduction is easily seen.

We next consider the related problem of finding short factorizations in the
monoidH, of self-maps on a set of elements.
MOoONOID FACTORIZATION
Instance:A set A of self-maps oni], and a self-mah.
Parameter:A positive integerk.
Question:ls there a factorization dfi of lengthk over A?

Theorem 7. MoNOID FACTORIZATION is hard for W[2].

Proof. The reduction is fronDoMINATING SET. LetG = (V, E) be a graph for
which we are to determine whether there ik-alement dominating set. Let
be the order ofG. As in Theorem 6, we construct a s&tof self-maps onij’]
where we view fi’] as consisting oh blocks. Here we have’ = 2n (the blocks
have size 2). Letv denote the self-map ofil, 2} that maps both elements to 2.
For each vertexi of G we construct a map, that consists ofv in each block
corresponding to a vertex € N[u], and that is the identity map on all other
blocks.

The self-maph to be factored consists af in each block.

Verification that this construction works correctly is straightforward, noting
thata = o' for any number of compositions of the block map O

Since the above arguments do not employ any global aspects of the symmetric
group or the monoid of self-maps (i.e., everything interesting occurs in the blocks
separately) it seems reasonable to ask whether a more intricate construction could
be used to improve these results. For example, it might be that these factorization
problems are hard foW/[t] for any fixedt. Alternatively, it would be interesting
if PERMUTATION GROUP FACTORIZATION turned out to belong taVv[1] or
W1{2]. This is a nice example of a widespread situation in our present knowledge
of the parameterized complexity of concrete problems, namely, large gaps relative
to theW hierarchy between the best known membership and hardness results.

On the parameterized complexity of short computation and factorization 337

References

[ADF]

[BDHW]

[BFH]

[cci]

[cc2]
[CCDF]
[Da]

[DEF]

[DF1]
[DF2]
[DF3]

[DF4]

[DF5]

[DF6]

[DF7]

[FHW]

[FK]

[GJ]

(HM]

[KT]

[PY]

Abrahamson K., Downey R., Fellows M.: Fixed-parameter intractability II. Proc. 10th
Symposium on Theoretical Aspects of Computer Science (STACS) (1993). Lecture Notes
in Computer Science, vol. 665, pp. 374-385. Berlin Heidelberg New York: Springer 1993
Bodlaender H., Downey R., Hallett M., Wareham H.: Parameterized complexity analysis
in computational biology. Comput. Appl. Bioscdil, 49-57 (1995)

Bodlaender H., Fellows M., Hallett M.: Beyond NP-completeness for problems of bounded
width. Proceedings of the ACM Symposium on the Theory of Computing, pp.449-458
(1994)

Cai L., Chen J.: On the amount of nondeterminism and the power of verifying. Proc.
International Conference on the Mathematical Foundations of Computer Science (MFCS),
Lecture Notes in Computer Science, vol. 711, pp. 311-320. Berlin Heidelberg New York:
Springer 1993

Cai L., Chen J.: Fixed-parameter tractability and approximabilitfi®fhard optimization
problems. Proc. Israeli Conf. on Theory of Computing and Systems (1993), 118-126
Cai L., Chen J., Downey R.G., Fellows M.R.: Advice classes of parameterized tractability.
Ann. Pure Appl. Logic (to appear)

Davis M.: Unsolvable Problems. In: Barwise J. (ed.) Handbook of Mathematical Logic,
p.580. Amsterdam: Elsevier 1977

Downey R.G., Evans P.A., Fellows M.R.: Parameterized learning complexity. Proc. Sixth
ACM Workshop on Computational Learning Theory (COLT), pp.51-57. New York: ACM
Press 1993

Downey R.G., Fellows M.R.: Fixed parameter tractability and completeness. Congr. Num.,
87, 161-187 (1992)

Downey R.G., Fellows M.R.: Fixed parameter tractability and completeness I: Basic Re-
sults, SIAM J. Comput24, 873-921 (1995)

Downey R.G., Fellows M.R.: Fixed parameter tractability and completeness Il. On com-
pleteness foW[1]. Theoretical Computer Science 11, 109-131 (1995)

Downey R.G., Fellows M.R.: Fixed parameter intractability (extended Abstract). Proceed-
ings of the Seventh Annual IEEE Conference on Structure in Complexity Theory, pp.
36-49 (1992)

Downey R.G., Fellows M.R.: Fixed parameter tractability and completeness lll. Some
structural aspects of thé/-hierarchy. In: Ambos-Spies K., Homer S., $ang U. (eds.)
Complexity Theory, pp.166-191. Cambridge: Cambridge University Press 1993

Downey R.G., Fellows M.R.: Parameterized computational feasibility. In: Clote P., Remmel
J. (eds.) Feasible Mathematics I, pp. 219-244. Boston: Bitkbr 1995

Downey R.G., Fellows M.R.: Parameterized Complexity. Monograph in preparation
Fellows M.R., Hallett M.T., Wareham H.T.: DNA physical mapping: Three ways difficult.
Proceedings of the First European Symposium on Algorithms. Lecture Notes in Computer
Science, vol726, pp.157-168. Berlin Heidelberg New York: Springer 1993

Fellows M.R., Koblitz N.: Fixed-parameter complexity and cryptography. In: in Proceed-
ings of the Tenth International Conference on Algebraic Algorithms and Error-Correcting
Codes (AAECC 10). Lecture Notes in Computer Science, 6§38 pp.121-131. Berlin
Heidelberg New York: Springer 1993

Garey M.R., Johnson D.S.: Computers and intractability: A guide to the theoRPef
completeness. San Francisco: Freeman 1979

Henglein F., Mairson H.G.: The complexity of type inference for higher-order typed
Lambda Calculi. In: Proc. Symp. on Principles of Programming Languages (POPL),
pp.119-130 (1991)

Kolaitis P.G., Thakur M.N.: Approximation properties &fP minimization classes. Proc.

6th Structure in Complexity Theory Conference, pp. 353—-366 (1991)

Papadimitriou C.H., Yannakakis M.: On limited nondeterminism and the complexity of the
V-C dimension. Proccedings of the Eighth IEEE Conf. on Structure in Complexity Theory,
pp.12-18. New York: IEEE Press 1993

