
Arch. Math. Logic (1997) 36:321–337

c© Springer-Verlag 1997

On the parameterized complexity
of short computation and factorization

Liming Cai 1,?, Jianer Chen2,??, Rodney G. Downey3,???,
Michael R. Fellows4,????

1 Department of Mathematics, East Carolina University, Greenville, NC 27858, USA
2 Department of Computer Science, Texas A & M University, College Station, TX 77843, USA
3 Department of Mathematics, Victoria University, P.O. Box 600, Wellington, New Zealand
4 Department of Computer Science, University of Victoria, Victoria, B.C. V8W 3P6, Canada

Received August 1, 1994

Abstract. A completeness theory for parameterized computational complexity
has been studied in a series of recent papers, and has been shown to have many
applications in diverse problem domains including familiar graph-theoretic prob-
lems, VLSI layout, games, computational biology, cryptography, and compu-
tational learning [ADF,BDHW,BFH, DEF,DF1-7,FHW,FK]. We here study the
parameterized complexity of two kinds of problems: (1) problems concerning
parameterized computations of Turing machines, such as determining whether a
nondeterministic machine can reach an accept state ink steps (theShort TM

Computation Problem), and (2) problems concerning derivations and fac-
torizations, such as determining whether a wordx can be derived in a grammar
G in k steps, or whether a permutation has a factorization of lengthk over a
given set of generators. We show hardness and completeness for these problems
for various levels of theW hierarchy. In particular, we show thatShort TM

Computation is complete forW[1]. This gives a new and useful characteriza-
tion of the most important of the apparently intractable parameterized complexity
classes.

? Research supported by an Engineering Excellence Award from Texas A & M University
?? Research supported by NSF grant CCR-9110824

??? Research supported by Victoria University IGC and by the United States / New Zealand Co-
operative Science Foundation under grant INT 90-20558 and the New Zealand Marsden Fund for
Basic Science
???? Research supported in part by the National Science and Engineering Research Council of
Canada
Mathematics Subject Classification:68Q05, 68Q15, 68Q25, 68Q50
Correspondence to: R.G. Downey

322 L. Cai et al.

1 Introduction

The central issues on which the theory of parameterized computational complex-
ity focuses are rooted in the following general observations concerning compu-
tational problems.

• Many important natural problems have input that consists of two or more
items. For example, the familiar problemsBandwidth, Min Cut Linear

Arrangement, Vertex Cover and Dominating Set all take as input
a graphG and a positive integerk. So it is natural to consider the relative
contributions of the different parts of the input to the complexity of the problem.

• There is a large and growing body of results of the following qualitative
sort: there is a constantα such for every fixed “parameter”k, the problemΠ
is solvable in timeO(nα), with α independent ofk. For example,Min Cut

Linear Arrangement and Vertex Cover are solvable in time linear in
the number of vertices ofG for every fixedk. The algorithmic techniques used
to prove suchfixed parameter tractabilityresults are in some cases interesting
and distinctive (for example, well-quasiordering).

• The fact that a problemΠ taking as input two itemsx andk is complete for
NP (or PSPACE, or EXPTIME, ...) tells usnothing about the fixed-parameter
tractability or intractability ofΠ.

• For many natural problems, a small range of parameter values may serve
important applications.

• Many natural problems involve a “hidden parameter.” Elucidating the contribu-
tion of this parameter to the complexity of the problem may illuminate why the
problem is “easier to solve in practice” than one might expect from traditional
complexity analysis. An example of this phenomena is exhibited by the problem
Type Inference in ML [HM,DF6]. Engineering practice may introduce (and
fix) a parameter. This can render the complexity of a problemeasierthan one de-
sires (for example, in cryptography [FK]). The familiar practice of “coping with
NP-completeness” by restricting the input can often be conveniently described
by a parameterization (for example, by making the parameter the treewidth of
the input for a problem concerning graphs).

• For many familiar parameterized problems the difference between fixed-
parameter tractability and apparent intractability is very much akin to the ap-
parent difference we observe between problems which are inP and problems
which areNP-complete. For example, while we can determine whether a graph
has a vertex cover of sizek or a cutwidthk layout in linear time for each fixedk,
the best known algorithms for determining whether a graph has a dominating set
of sizek, or a bandwidthk layout, require timeO(nk+1) and are based essentially
on a brute force examination of possible solutions. This is strongly reminiscent
of the current situation for manyNP-complete problems.

In a recent series of papers, a framework has been introduced for exploring,
qualitatively, the central phenomena of fixed-parameter tractability for parame-
terized problems [ADF,CCDF,DF1-6]. We sayqualitative, noting that this is all

On the parameterized complexity of short computation and factorization 323

that a complexity theory of this sort (includingNP-completeness) can do. In the
more familiar theory ofNP-completeness, the central phenomena and the model
of computational feasibility, ispolynomial timecomputability. No one would
seriously argue, however, that a polynomial time complexity ofn100 represents
tractability in any practical sense. A similar statement holds for fixed-parameter
tractability.

In traditional complexity theory (such asNP-completeness), the input to a
computational problem is viewed as a single unstructured object — all that mat-
ters is its size. Parameterized computational complexity introduces fundamentally
the distinction between “more important” and “less important” parts of problem
input, and allows us to investigate how different parts contribute to the overall
computational complexity of the problem.

Our main results concern the following two problems about resource-bounded
Turing machine computations; informally, these study the power ofk-time and
k-spacefor nondeterministic machines.
Short TM Computation

Input: A nondeterministic Turing machineM , a wordx and a positive integer
k.
Parameter: k
Question: Is there an computation ofM on inputx that reaches an accept state
in at mostk steps?
Compact TM Computation

Input: A nondeterministic Turing machineM , a wordx and a positive integer
k.
Parameter: k
Question: Is there an accepting computation ofM on inputx that visits at most
k tape squares?

Our main result, Theorem 1, shows thatShort TM Computation is
complete forW[1], and will be seen to provide a new and useful characteri-
zation of this most important of the parameterized complexity classes. (“Most
important,” becauseW[1]-hardness is presently the minimum available demon-
stration of likely fixed-parameter intractability.) Concretely, Theorem 1 shows
that Short TM Computation is fixed-parameter tractable if and only if the
familiar (and apparently resistant)Clique problem is fixed-parameter tractable.

Theorem 2 shows that thek-space analog,Compact TM Computation,
is hard for the complexity classW[P].

In the next section we review the basics of parameterized computational
complexity. In Sect. 3 we sketch the proofs of the main theorems. In Sect. 4 we
address related problems about grammars, Post systems, and square tiling. In
Sect. 5 we consider some more distantly related short factorization problems in
permutation groups and monoids.

324 L. Cai et al.

2 Parameterized computational complexity

The formal framework for our study is established as follows.

Definition. A parameterized problemis a setL ⊆ Σ∗ × Σ∗ whereΣ is a fixed
alphabet.

In the interests of readability, and with no effect on the theory, we consider
that a parameterized problemL is a subset ofL ⊆ Σ∗ ×N . For a parameterized
problem L and k ∈ N we write Lk to denote the associated fixed-parameter
problem (k is the parameter)Lk = {x|(x, k) ∈ L}.

Definition. We say that a parameterized problemL is (uniformly) fixed-parameter
tractable if there is a constantα and an algorithmΦ such thatΦ decides if
(x, k) ∈ L in time f (k)|x|α wheref : N → N is an arbitrary function.

Definition. Let A,B be parameterized problems. We say thatA is (uniformly
many:1)reducible to B if there is an algorithmΦ which transforms (x, k) into
(x′, g(k)) in time f (k)|x|α, wheref , g : N → N are arbitrary functions andα is
a constant independent ofk, so that (x, k) ∈ A if and only if (x′, g(k)) ∈ B.

It is easy to see that ifA reduces toB andB is fixed parameter tractable then
so too isA. Note that ifP = NP then problems such as Minimum Dominating
Set are fixed-parameter tractable. Thus a completeness program is reasonable.

The classes of parameterized problems that we define below are intuitively
based on the complexity of the circuits required to check a solution, or alter-
natively the “natural logical depth” of the problem. (See also [CC1-2], [KT]
and [PY] for different views of this issue in terms of alternating logarithmically
bounded Turing Machines and finite model theory.)

We first define circuits in which some gates have bounded fan-in and some
have unrestricted fan-in. It is assumed that fan-out is never restricted.

Definition. A Boolean circuit is ofmixed typeif it consists of circuits having
gates of the following kinds.
(1) Small gates: not gates,and gates andor gates with bounded fan-in. We will
usually assume that the bound on fan-in is 2 forand gates andor gates, and 1
for not gates.
(2) Large gates: And gates andOr gates with unrestricted fan-in.

Definition. The depthof a circuit C is defined to be the maximum number of
gates (small or large) on an input-output path inC . The weft of a circuit C is
the maximum number of large gates on an input-output path inC .

Definition. We say that a family of decision circuitsF hasbounded depthif there
is a constanth such that every circuit in the familyF has depth at mosth. We
say thatF hasbounded weftif there is constantt such that every circuit in the
family F has weft at mostt . The weightof a boolean vectorx is the number of
1’s in the vector.

On the parameterized complexity of short computation and factorization 325

Definition. Let F be a family of decision circuits. We allow thatF may have
many different circuits with a given number of inputs. ToF we associate the
parameterized circuit problemLF = {(C , k) : C accepts an input vector of weight
k}.

Definition. A parameterized problemL belongs toW[t] if L reduces to the pa-
rameterized circuit problemLF (t,h) for the family F (t , h) of mixed type decision
circuits of weft at mostt , and depth at mosth, for some constanth.

Definition. A parameterized problemL belongs toW[P] is L reduces to the
circuit problemLF , whereF is the set of all circuits (no restrictions).

Definition. We designate the class of fixed-parameter tractable problemsFPT.

The above leads to an interesting hierarchy

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P]

for which a wide variety of natural problems are now known to be complete or
hard for various levels (compendiums can be found in [DF2,4,7]).

It should be emphasized that there is no easy correspondence between mem-
bership or hardness in any of these parameterized complexity classes andNP- or
PSPACE-completeness (etc.) for the corresponding “unparameterized” problems.
For example, in [ADF] problems concerningk-move games are studied, all of
which arePSPACE-complete in unparameterized form; some of these turn out
to be fixed parameter tractable, and others to be hard for various classes of the
W hierarchy. A contrasting example can be found in [DEF] where it is shown
thatVapnik-Chervonenkis Dimension is complete forW[1]; the unparam-
eterized form of this problem is probably of difficulty intermediate betweenP
andNP (see [PY]). Similarly,Tournament Dominating Set, which can be
solved in timeO(nlog n) and is unlikely to beNP-complete [PY], can be shown
to be complete (in the natural parameterized form) forW[2] (see [DEF]).

3 k -Resource bounded turing machine computations

Theorem 1. Short TM Computation is complete for W[1].

Proof. We give the proof at a high level. The formal details are laborious but
straightforward. To show hardness forW[1] we reduce fromClique, which is
shown to be hard forW[1] in [DF3]. Let G = (V ,E) be a graph for which we
wish to determine whether it contains ak-clique. We shown how to construct a
nondeterministic Turing machineM that can reach an accept state ink′ = f (k)
moves if and only ifG contains ak-clique. The Turing machineM is designed
so that any accepting computation consists of two phases. In the first phase,M
nondeterministically writesk symbols representing vertices ofG in the first k
tape squares. (There are enough symbols so that each vertex ofG is represented
by a symbol.) The second phase consists of making

(k
2

)
scans of thek tape

326 L. Cai et al.

squares, each scan devoted to checking, for a pair of positionsi , j , that the
vertices represented by the symbols in these positions are adjacent inG. Each
such pass can be accomplished by employingO(|V |) states inM dedicated to
the ij th scan.

In order to show membership inW[1] it suffices to show how theShort

Computation problem for a Turing machineM = (Σ,Q, q0, δ,F) and positive
integerk can be translated into one about whether a circuitC accepts a weight
k′ input vector, whereC has depth bounded by somet (independent ofk and the
Turing machineM), and has only a single large (output)and gate, with all other
gates small. We arrange the circuit so that thek′ inputs to be chosen to be set
to 1 in a weightk′ input vector represent the various data: (1) thei th transition
of M , for i = 1, ..., k, (2) the head position at timei , (3) the state ofM at time
i , and (4) the symbol in squarej at time i for 1 ≤ i , j ≤ k. Thus we may take
k′ = k2 + 3k. In order to force exactly one input to be set equal to 1 among a
pool of input variables (for representing one of the above choices), we can add
to the circuit, for each such pool of input variables, and for each pair of variables
x andy in the pool, a small “not both” circuit representing (¬x ∨ ¬y). It might
seem that we must also enforce (e.g. with a largeor gate) the condition, “at least
one variable in each such pool is set true” — but this is actually unnecessary,
since in the presence of the “not both” conditions on each pair of input variables
in each pool, an accepted weightk′ input vectormust haveexactly one variable
set true in each of thek′ pools. Letn denote the total number of input variables
in this construction. We have in any casen = O(k|δ| + k2 + k|Q| + k2|Σ|).

The remainder of the circuit encodes various checks on the consistency of
the above choices. These consistency checks conjunctively determine whether
the choices represent an acceptingk-step computation byM , much as in the
proof of Cook’s theorem. These consistency checks can be implemented so that
each involves only a bounded numberb of the input variables. For example,
we will want to enforce that if five variables are set true indicating particular
values of: (1) the tape head position at timei + 1, (2) the head position at time
i , (3) the state at timei , (4) the scanned symbol at timei and (5) the machine
transition executed at timei , then these indicated values are consistent withδ.
Thus withO(n5) small “checking” circuits of bounded depth we can insure this
sort of consistency. In general, we will haveO(nb) such “checking” circuits for
consistency checks involvingb values. All of the small “not both” and “checking”
circuits feed into the single large outputand gate ofC . The formal description
of all this is straightforward. ut

We remark that Theorem 1 depends crucially on there being no bound on
alphabet size or on the number of nondeterministic transition possibilities out
of a state, in the definition of the problem. If we restrictShort TM Com-

putation to TM’s with |Σ| bounded by some constantb, then the number of
configurations is bounded bybk |Q|k and the problem becomes fixed parameter
tractable. A similar statement holds for TM’s having a boundb on the number
of nondeterministic transition possibilities for any state.

On the parameterized complexity of short computation and factorization 327

Theorem 2. Compact TM Computation is hard for W[P].

Proof. To show that the problem is hard forW[P] we reduce from the problem
Monotone Weight k Circuit Satisfiability that has been shown to be
complete forW[P] in [DF4]. Let C be a circuit for which we wish to determine
whether there is an input vector of weightk accepted byC . We may assume
that each logic gateg of C has two inputs. In time polynomial in|C | we can
describe a Turing machineM sketched as follows.

M has an alphabet consisting of one letter for each input toC , and the
operation ofM consists of two phases. In the first phase,M makesk moves
nondeterministically, writing down in the firstk tape squaresk symbols which
representk inputs toC set to 1. In the second phase (and visiting no other tape
squares),M checks whether the guess made in the first phase represents a vector
accepted by the circuitC .

The key point is that we can structure the transition table ofM to accomplish
this, with the size of the table polynomial in|C |. To do this, we make two states
ql

up and ql
down for each connection (orline) l of the circuit C . Let g be anand

gate ofC , let l be an output line ofg and suppose the input lines to the gateg
arel1 andl2. We include in the transition table forM transitions fromql

up to ql1
up,

from ql1
down to ql2

up, and fromql2
down to ql

down. The significance of being a state
ql

down is that this represents a value of 1 for the linel as computed byC on the
input guessed in the first phase. The stateql

up might be viewed as a state ofquery
about the value ofl for the circuitC on the input guessed in the first phase. Note
that the three transitions described above for theand gateg thus enforce that
ql

down can be reached only ifql1
down and ql2

down can be reached. The appropriate
transitions for anor gate will differ in the obvious way, i.e., we arrange that the
stateql

down can be reached if either ofql1
down or ql2

down can be reached.
If l is an input line to the circuitC , then we encode in the state table forM

a “check” (involving a scan of thek tape squares) to see if the corresponding
input symbol was written during the first phase of computation. The second phase
begins in the stateqlout

up where lout is the output line ofC , and the only accept

state isqlout
down. ut

4 Grammars, post systems and tiling

In this section we consider the parameterized complexity of the following clas-
sical problems about derivations of strings of symbols.
Short Derivation (for Unrestricted Grammars)

Instance: The three pieces of information:
(1) A grammarG = (N , Σ,Π,S), whereN is a finite set of “nonterminal sym-
bols,” Σ is a finite set of “terminal symbols,”Π is a finite set of “production
rules” of the form (α → β) with α, β ∈ (N ∪ Σ)∗, and S ∈ N is the “start
symbol.”
(2) A word x ∈ Σ∗.

328 L. Cai et al.

(3) A positive integerk.
Parameter: k
Question: Is there aG-derivation ofx of lengthk? That is, is there a sequence
of wordsx0, ..., xk with xi ∈ (N ∪Σ)∗ for i = 0, ..., k, that satisfies the require-
ments:
(1) x0 = S,
(2) xk = x, and
(3) for eachi = 1, ..., k there is a production ruleπi = (β → γ) ∈ Π such that
xi−1 = αβδ andxi = αγδ?

We note in passing that if the above problem is restricted to grammars hav-
ing production rules in which the left hand side always consists of a single
nonterminal symbol (termed acontext-free grammar), then it is fixed-parameter
tractable.
Short Post Correspondence Problem

Instance: A Post systemΠ and a positive integerk, where aPost systemconsists
of a finite alphabetΣ and two sequencesα = (α1, ..., αn) andβ = (β1, ..., βn)
Parameter: k
Question: Is there a lengthk solution forΠ? That is, is there a sequence of
integersi1, ..., ik (not necessarily distinct) such that

αi1 · · ·αik = βi1 · · ·βik ?

Lemma 1. Clique reduces toShort Derivation.

Proof. Let G = (V ,E) be a simple graph, andk a positive integer. We describe
a grammarG = (N , Σ, Γ,S), a wordx ∈ Σ∗, and a positive integerk′ = f (k)
such that the start symbolS derivesx in k′ steps if and only ifG has ak-clique.

The terminal symbols of the grammar are

Σ = {#} ∪ {u : u ∈ V} ∪ {l }
The nonterminal symbols are

N = N1 ∪ N2 ∪ N3 ∪ N4

where
N1 = {S,S′,M ,W,Z}
N2 = {Xi : 1 ≤ i ≤ k}

N3 = {R[i , j] : 1 ≤ i ≤ k, 0 ≤ j ≤ k − 1}

N4 =

{
T[i , u, j] : 1 ≤ i ≤ k, u ∈ V , 1 ≤ j ≤

(
k
2

)}
The start symbol isS.
The target stringx ∈ Σ∗ is

x = #3(k
2)l k+2

On the parameterized complexity of short computation and factorization 329

where the exponents indicate symbol repetition.
The set of productionsΓ is

Γ = Γ1 ∪ Γ2 ∪ · · · ∪ Γ12

In the formal description of some of these production rule sets (in particular,Γ6,
Γ7 andΓ8) we make reference to the following sets of indices. Letσ denote the
sequence of symbols in the setS = {σ[i , j] : 1 ≤ i < j ≤ k} in increasing
lexicographic order. Thus the length of the sequenceσ is

(k
2

)
. Let sr denote the

r th symbol of the sequenceσ. For i = 1, ..., k define

Ji = {r : sr = σ[i , j], 1 ≤ j ≤ k}
J ′

i = {r : sr = σ[j , i], 1 ≤ j ≤ k}

J ′′
i =

{
1, ...,

(
k
2

)}
− (Ji ∪ J ′

i)

Thus for k = 4 we haveσ = σ[1, 2]σ[1, 3]σ[1, 4]σ[2, 3]σ[2, 4]σ[3, 4], J1 =
{1, 2, 3}, J ′

1 = ∅, J ′′
1 = {4, 5, 6}, J2 = {4, 5}, J ′

2 = {1} andJ ′′
2 = {2, 3, 6}.

Intuitive Overview. Let S denote the starting symbol for the grammar. The
initial production rule (the only one that can be applied) is

S → S′R[k, 1] · · ·R[1, 1]#X[1]X[2]#X[1]X[3]# · · · #X[k − 1]X[k]Z

There are productions by which the pairs of symbolsX[i]X[j] may produce
a pair of terminal symbols representing an edge of the graph; this represents
in some sense a “guess” about ak-clique in G. Note that there are

(k
2

)
pairs

corresponding to the
(k

2

)
edges of ak-clique. For such a guess to be consistent,

it must be verified that each occurrence of the symbolX[i] produces the same
guessed vertex (as the endpoint of a guessed edge). TheR andT symbols make
this consistency check by “commuting across” the intermediate string. The last
index of these symbols functions as a counter that keeps track of which edge of
the potential clique is being checked. TheR[i , ∗] (“read”) symbols commute until
the first occurrence of thei th vertex (produced byX[i]) of the potentialk-clique
is encountered. At this point the symbolR[i , ∗] is commuted past the edge of this
first occurrence, but transformed into aT (“test”) symbol that records the identity
of the i th vertex (as the second component in the indexing of the symbol). As
this symbol continues to commute across the portion of the string corresponding
to the guessed edges, there are three possibilities that arise with respect to next
guessed edge of the commute: (1) the first endpoint of the guessed edge should
correspond to the recorded vertex of the symbol, (2) the second endpoint of
the guessed edge should correspond to the recorded vertex of the symbol, or
(3) neither endpoint should correspond to the recorded vertex of the symbol.
The positions in the sequence of

(k
2

)
guessed edges corresponding to these three

possibilities are indexed byJi , J ′
i and J ′′

i , respectively, and the corresponding
sets of production rules areΓ6, Γ7, and Γ8. The “read and test” nonterminal
symbols that implement the consistency checking can only be eliminated from

330 L. Cai et al.

the string by successfully commuting to theZ symbol on the right end of the
string. In the final phase of a successful derivation of the target stringx the
symbolS′ must also commute across in order to be eliminated at the right end.
As it commutes, it replaces the guessed vertices with the place holding symbol
#.

The details of the production rules of the grammar are as follows.

Γ1 = {S → S′R[k, 1] · · ·R[1, 1]#X1X2#X1X3#

· · · #X1Xk#X2X3#X2X4# · · · #Xk−1XkZ}
Γ2 = {Xi Xj → uv : 1 ≤ i < j ≤ k, uv ∈ E}
Γ3 = {R[1, 1]#uv → #uvT[1, u, 2] : uv ∈ E}
Γ4 = {R[i , j]#uv → #uvR[i , j + 1] : 2≤ i ≤ k, 1 ≤ j ≤ i − 2, uv ∈ E}
Γ5 = {R[i , j]#uv → #uvT[i , v, j + 1] : 2≤ i ≤ k, j = i − 1, uv ∈ E}
Γ6 = {T[i , u, j]#uv → #uvT[i , u, j + 1] : 1≤ i ≤ k, j ∈ Ji , uv ∈ E}
Γ7 = {T[i , v, j]#uv → #uvT[i , v, j + 1] : 1≤ i ≤ k, j ∈ J ′

i , uv ∈ E}
Γ8 = {T[i , u, j]#xy → #xyT[i , u, j + 1] : 1≤ i ≤ k, j ∈ J ′′

i }
Γ9 =

{
T

[
i , u,

(
k
2

)
+ 1

]
Z → ZM : 1 ≤ i ≤ k − 1, u ∈ V

}
Γ10 =

{
T

[
k, u,

(
k
2

)
+ 1

]
Z → WM

}
Γ11 = {S′#uv → ###S′ : uv ∈ E}
Γ12 = {S′WMk → l k+2}

It remains only to specify the number of steps for the derivation:

k′ = 1 +

(
k
2

)
+ (k + 1)

[(
k
2

)
+ 1

]
Half of the correctness argument for the reduction is straightforward. IfG has

a k-clique then a derivation ofx of lengthk′ can be written down by following
the sketch above, noting that all of the necessary means for commuting symbols
from left to right are available. For the other half of the argument, it is easy to
see that the necessary first step of the derivation (since it is the only one possible)
creates a situation where the theR symbols (or theT symbols into which they
are transformed) must be commuted across the string. The key point is that this
is possible only if the guessed edges are consistent in providing evidence of a
k-clique in G. ut

Lemma 1 together with the results of [DF3] shows thatShort Derivation

is W[1] hard. Recall that acontext-sensitivegrammar is one where the produc-
tionsα → β satisfy the length restriction|α| ≤ |β| andα, β 6= ε. Our argument
for Lemma 1 actually shows thatShort Derivation remainsW[1] hard for
this special case. We next establish membership inW[1].

On the parameterized complexity of short computation and factorization 331

Lemma 2. Short Derivation is in W[1].

Proof. To show thatShort Derivation belongs toW[1] we will use Theo-
rem 1. That is, we will describe (at a high level) how to reduce the problem of
determining whether a wordx can be generated ink steps from a given (unre-
stricted) grammarG = (N , Σ,Π,S), to the problem of determining whether a
nondeterministic Turing machine can reach a halting configuration inf (k) steps.

The computation of the Turing machine is organized in two phases. The
first phase nondeterministically guesses a description of thek-step derivation
of x. (This description can be recorded byO(k2) symbols written in as many
tape squares; we describe how this can be accomplished below.) The second
phase consists of a deterministic computation that checks whether the guessed
derivation ofx is valid.

Suppose the sequencex0, ..., xk corresponds to ak-step derivation ofx in the
grammarG in the sense that: (1)x0 = S is the start symbol ofG, (2) xk = x, and
(3) for eachi , i = 1, ..., k, xi can be obtained fromxi−1 by the application of the
production ruleαi → βi . For any wordw ∈ (N ∪ Σ)∗ let w[j] denote thej th

symbol ofw, and fors ≤ t let w[s, t] denote the substring ofw consisting of the
symbolsw[s] · · ·w[t]. Thus for the production ruleαr → βr we writeβr [s, t] to
denote the substring of the yieldβr consisting of thesth throught th symbols.

We employ an alphabet with a distinct symbol for each possible substring
βr [s, t] of the yield of a production rule. Note that the number of symbols required
is bounded by a polynomial in the size of the description of the grammarG. Let
Γ denote this alphabet.

The description of thek-step derivation ofx consists of, fori = 1, ..., k:
(1) A factorization ofxi

xi = βi1[si1, ti1] · · ·βim[sim, tim]

represented by symbols ofΓ .
(2) The production ruleαi → βi that yieldsxi from xi−1.
(3) The substring of symbols of (1) forxi−1 that represents the symbols consumed
in the application of the production rule identified in (2).
(4) The substring of symbols of (1) forxi that represents the symbols yielded by
the application of the production rule identified in (2).

We can describe appropriate factorizations for the stringsx0, ..., xk in more
detail as follows. To each symbol of each of the stringsx0, ..., xk ∈ (N ∪ Σ)∗

we can associate atime of production: the indexi of the stringxi in which the
symbol first appeared (i.e., was in the yield of the application of the production
rule that producedxi from xi−1), and atime of consumption: the indexj (if one
exists, otherwise say∞) such that the symbol is consumed by the application
of the production rule that yieldsxj +1 from xj . Say that two symbols inxi are
equivalentif: (1) they are adjacent inxi , and (2) they have the same times of
production and consumption. The relevant factorization ofxi is then given by
the equivalence classes. Each factor can be expressed by a symbolβr [s, t] ∈ Γ .

332 L. Cai et al.

By an easy induction, the factorization for eachxi has a representation over the
symbols ofΓ of length at most 1 + 2(k − 1).

It follows from the definition of the equivalence relation that ifxi is produced
from xi−1 by the production ruleαi → βi , thenαi is represented by a substring
of the symbols ofΓ that represent the factorization ofxi−1 andβi is represented
by a substring of the symbols ofΓ that represent the factorization ofxi .

The second computational phase for the Turing machine consists ofk deter-
ministic checks, with thei th check verifying that the guessed information of the
first phase relevant to the derivation ofxi from xi−1 is consistent. It is easy to
see that each such check can be accomplished byg(k) moves through a state
space of polynomial size, for an appropriately choseng(k). ut

As a consequence of Lemmas 1 and 2 and Theorem 1 we have proved:

Theorem 3. Short Derivation is complete for W[1].

We next consider the complexity ofShort Post Correspondence.

Lemma 3. Short Post Correspondence reduces toShort TM Com-

putation.

Proof. Given an instance (Π, k) of theShort Post Correspondence prob-
lem, we can easily express the question in terms of whether a particular Turing
machine has ak′-step accepting computation, fork′ determined by an appro-
priate function ofk, as follows. Consider a machineM that computes in two
phases, over an alphabet that includes one symbol for each pair of strings in the
Post system, and one symbol for each of the positive integers 1, ...,m wherem
is a bound on the total number of symbols (in the strings of the Post system)
for any solution. (Clearlym ≤ k|Π|.) In the first phase,M writes on 3k tape
squares indicating (nondeterministically) aguessed solutionincluding the infor-
mation: (1) what Post pair is thei th factor for i = 1, ..., k, (2) on what symbol
positions thei th factors begin (in the two concatenated strings). In the second
phase,M conducts a number of “checks”, each consisting of: (1) a scan of the
guess, recording in the resulting stateq, e.g., that thei th factor is (xj , yj) and
begins in the first component in symbol positionr , and that the next factor is
due to begin in symbol positions. There is a transition out ofq in the transition
table forM if and only if the information recorded in the stateq is “valid”, i.e.,
s = r + |xj |. The number of states required for this check isO(|Π|3). It is not
too hard to see that 2k checks of this sort are enough to insure that the guessed
starting positions of the factors are consistent. Similarly, it is necessary to make
k2 checks that each guessed (factor + starting position) in the first component is
compatible with each (factor + starting position) in the second component. That
is, we must insure that this information does not imply any mismatched symbols
in the two solution strings for the Post problem. A successful check will make
f (k) moves, wheref is an appropriately chosen function ofk. ut
Theorem 4. Short Post Correspondence is complete for W[1].

On the parameterized complexity of short computation and factorization 333

Proof. Lemma 3 shows that the problem belongs toW[1]. To show that it is
hard forW[1] we compose the reduction of Lemma 1 (fromClique) with the
reduction of Theorem 4.2 of Davis [Da] (attributed to an unpublished manuscript
of Floyd). In general, the second reduction of this composition doesnot constitute
a parameterized reduction ofShort Derivation to Short Post Corre-

spondence. For example, the reduction is only defined for context-sensitive
grammars. However, the image of the reduction fromClique described by
Lemma 1 consists of instances of theShort Derivation problem where: (1)
the grammar is context sensitive, and (2) the word to be derived ink steps
has length bounded by a function ofk. Under these restrictions, the reductions
described by Davis’ Theorem 4.2 is indeed a valid parameterized reduction.ut

We next consider the complexity of tiling small regions; the problem is de-
fined as follows (see [GJ]).
Square Tiling

Instance:SetC of colors, collectionT ⊆ C4 of tiles (where〈a, b, c, d〉 denotes
a tile whose top, right, bottom and left sides are coloreda, b, c, d respectively),
and a positive integerk.
Parameter: k
Question:Is there a tiling of ak×k square using the tiles inT, i.e., an assignment
f of a tile A(i , j) ∈ T to each ordered pairi , j , 1≤ i ≤ k, 1≤ j ≤ k, such that
(1) if f (i , j) = 〈a, b, c, d〉 and f (i + 1, j) = 〈a′, b′, c′, d′〉, thena′ = c, and (2) if
f (i , j + 1) = 〈a′, b′, c′, d′〉 thenb = d′?

Theorem 5. Square Tiling is complete for W[1].

Proof. Membership inW[1] is straightforward. Given an instance of the tiling
problem as defined above we can create a Turing machineM that reaches a
halting configuration ink′ steps (wherek′ is an appropriate function ofk) as
follows. In the first phase of computation,M writes ontok2 tape squares non-
deterministically a choice of tiles. In the second phase of computationM makes
2k(k − 1) passes, each pass dedicated to checking the compatibility of the tiles
chosen for two adjacent positions in thek×k square. In any given pass, the first
recorded tile of the pair is “remembered” as state information.

To show that the problem is hard forW[1] we reduce from theW[1]-complete
problem Clique in two steps. The most important step is the reduction of
Clique to the problem of tiling ak1 × k2 rectangular region. The second and
easier step is to reduce the rectangular tiling problem toSquare Tiling. We
address the easier step first. Supposek1 ≤ k2.

Let T denote the set of tiles over the set of colorsC . We describe how to
construct a set of tilesT ′ over a set of colorsC ′ such that ak1 × k2 region can
be tiled fromT if and only if a k′ = k2 square region can be tiled fromT ′.

Supposez /∈ C . We may takeC ′ = C1 ∪ C2 where

C1 = C × {0, ..., k2}
C2 = {z} × {0, ..., k2}

334 L. Cai et al.

The set of tilesT ′ is the unionT ′ = T1 ∪ T2 ∪ T3 where

T1 = {〈(a, i), (b, j + 1), (c, i + 1), (d, j)〉 : 0 ≤ i ≤ k1 − 1, 0 ≤ j

≤ k2 − 1, 〈a, b, c, d〉 ∈ T}
T2 = {〈(a, k1), (z, j + 1), (z, k1 + 1), (z, j)〉 : 0 ≤ j ≤ k2 − 1, a ∈ C}
T3 = {〈(z, i), (z, j + 1), (z, i + 1), (z, j)〉 : k1 + 1≤ i ≤ k2 − 1, 0 ≤ j ≤ k2 − 1}

The basic idea is that the tiles ofT2 and T3 provide for additional rows of
padding to fill out thek2 × k2 square. The verification that ak1 × k2 rectangular
tiling with tiles from T yields a k2 × k2 square tiling with tiles fromT ′ is
straightforward and left to the reader.

Now suppose there is ak2×k2 square tilingf with tiles fromT ′. The second
components of theC ′ colors of the tiles inT ′ forces the tileA(i , j) = f (i , j) to
have the form〈(x1, i − 1), (x2, j), (x3, i), (x4, j − 1)〉, for 1 ≤ i , j ≤ k2. By the
definition of T1, and forgetting the second components of the colors,f must also
describe a tiling of thek1 × k2 rectangle in the firstk1 rows with tiles fromT.

We next argue thatClique can be reduced to the rectangular tiling problem.
Let G = (V ,E) and k be an instance ofClique. We will describe a set of
colors C and a set of tilesT that can tile ak1 × k2 rectangle if and only ifG
has ak-clique, wherek1 = k andk2 =

(k
2

)
. We will consider the columns of the

k1 × k2 rectangle as indexed byJk in lexicographic order. LetJk denote the set
of

(k
2

)
ordered pairs (r , s) with 1 ≤ r < s ≤ k. Let J +

k denoteJk augmented
with the single additional element 0. ConsiderJ +

k to be linearly ordered by the
lexicographic ordering inherited fromJk together with taking 0 to be the minimal
element. Forα ∈ J +

k let pre(α) denote the immediate predecessor ofα in the
ordering ofJ +

k .
The set of colors isC = C1 ∪ C2 where

C1 = J +
k × V

C2 = {0, ..., k} × E

The set of tiles is

T = {〈(i − 1, uv), (pre(α), w), (i , uv), (α,w)〉 : 1 ≤ i ≤ k, uv ∈ E, w ∈ V ,

α = (r , s) ∈ Jk ,

with (w = u if i = r) and (w = v if i = s)}
In discussing tiling it is useful to have the notion of the sequence of colors

in a row or column. Given a valid tilingf of the k1 × k2 rectangle, write

f (i , j) = 〈f1(i , j), f2(i , j), f3(i , j), f4(i , j)〉
That is, f1 describes the top color assignment,f2 describes the right side color
assignment, etc. Define thesequence of colors of the ith row to be the sequence
of lengthk1 + 1:

f4(i , 1), f2(i , 1) = f4(i , 2), f2(i , 2) = f4(i , 3), ..., f2(i , k1 − 1) = f4(i , k1), f2(i , k1)

On the parameterized complexity of short computation and factorization 335

Similarly define the sequence of colors of a column.
Claim 1. If there is ak-clique in G then thek1 × k2 rectangle can be tiled from
T.
Proof. Let v1, ..., vk be the vertices of the clique. We describe a tiling by describ-
ing the row and column color sequences. In thei th row the sequence of colors
is:

(0, vi), ((1, 2), vi), ((1, 3), vi), ..., ((1, k), vi), ((2, 3), vi), ..., ((k − 1, k), vi)

In the column indexed byα = (r , s) the sequence of colors is:

(0, vr vs), (1, vr vs), (2, vr vs), ..., (k, vr vs)

From this point, it remains only to check that these sequences can be realized by
tiles of T, which we leave to the reader.
Claim 2. If the k1 × k2 rectangle can be tiled fromT thenG has ak-clique.
Proof.Let f denote the tiling. By forgetting the first components, we may refer to
the colors ofC1 asrepresentinga vertex, and we may similarly refer to the colors
of C2 as representing an edge. First note that in any valid tiling fromT we must
have the same vertex represented in all of the colors of a row sequence, simply
because every tile has the same vertex represented on its sides. Similarly, the
same edge is represented in the sequence of colors of any column. Furthermore,
the first components of the sequence of colors in a column must be increasing
and is thus forced to be: 0, 1, 2, ..., k. A similar statement holds for the sequence
of colors in a row. Writevi to denote the vertex represented in rowi . Let i < j
and consider the column indexed by (i , j). It is straightforward to check that the
definition of T forces the edge represented by this column to bevi vj , which
implies that thevi are distinct and pairwise adjacent inG. ut

5 Short algebraic factorizations

The following problem clearly belongs toW[P].
Permutation Group Factorization

Instance: A set A of permutationsA ⊆ Sn, andx ∈ Sn.
Parameter: A positive integerk.
Question: Doesx have a factorization of lengthk over A?

Theorem 6. Permutation Group Factorization is hard for W[1].

Proof. We reduce from the parameterized problemPerfect Code that is
shown to be hard forW[1] in [DF3]. Let G = (V ,E) be a graph of ordern
for which we wish to determine whether there is a perfect code of sizek, that is,
a set of verticesV ′ ⊆ V of cardinalityk with the property that for every vertex
u ∈ V , |V ′ ∩ N [u]| = 1.

Let n′ = (k + 1)n. We describe how to produce an equivalent instance of
Permutation Group Factorization problem forSn′ .

336 L. Cai et al.

View n′ as divided inton blocks of sizek + 1, with these blocks in 1:1
correspondence with the vertices ofG. Let γ denote a cyclic permutation of the
elements of a block. Our setA consists ofn permutations, one for each vertex
of G. For a vertexu and with N [u] denoting the solid neighborhood ofu in
G, let au denote the element ofSn′ which acts on the blocks corresponding to
v ∈ N [u] according toγ, and which is the identity map on all other blocks.

The permutationx to be factored consists of the permutationγ on each of
the n blocks.

The correctness of the reduction is easily seen.

We next consider the related problem of finding short factorizations in the
monoidHn of self-maps on a set ofn elements.
Monoid Factorization

Instance:A set A of self-maps on [n], and a self-maph.
Parameter:A positive integerk.
Question:Is there a factorization ofh of lengthk over A?

Theorem 7. Monoid Factorization is hard for W[2].

Proof. The reduction is fromDominating Set. Let G = (V ,E) be a graph for
which we are to determine whether there is ak-element dominating set. Letn
be the order ofG. As in Theorem 6, we construct a setA of self-maps on [n′]
where we view [n′] as consisting ofn blocks. Here we haven′ = 2n (the blocks
have size 2). Letα denote the self-map on{1, 2} that maps both elements to 2.
For each vertexu of G we construct a mapau that consists ofα in each block
corresponding to a vertexv ∈ N [u], and that is the identity map on all other
blocks.

The self-maph to be factored consists ofα in each block.
Verification that this construction works correctly is straightforward, noting

thatα = αi for any number of compositions of the block mapα. ut
Since the above arguments do not employ any global aspects of the symmetric

group or the monoid of self-maps (i.e., everything interesting occurs in the blocks
separately) it seems reasonable to ask whether a more intricate construction could
be used to improve these results. For example, it might be that these factorization
problems are hard forW[t] for any fixedt . Alternatively, it would be interesting
if Permutation Group Factorization turned out to belong toW[1] or
W[2]. This is a nice example of a widespread situation in our present knowledge
of the parameterized complexity of concrete problems, namely, large gaps relative
to theW hierarchy between the best known membership and hardness results.

On the parameterized complexity of short computation and factorization 337

References

[ADF] Abrahamson K., Downey R., Fellows M.: Fixed-parameter intractability II. Proc. 10th
Symposium on Theoretical Aspects of Computer Science (STACS) (1993). Lecture Notes
in Computer Science, vol. 665, pp. 374–385. Berlin Heidelberg New York: Springer 1993

[BDHW] Bodlaender H., Downey R., Hallett M., Wareham H.: Parameterized complexity analysis
in computational biology. Comput. Appl. Biosci.11, 49–57 (1995)

[BFH] Bodlaender H., Fellows M., Hallett M.: Beyond NP-completeness for problems of bounded
width. Proceedings of the ACM Symposium on the Theory of Computing, pp. 449–458
(1994)

[CC1] Cai L., Chen J.: On the amount of nondeterminism and the power of verifying. Proc.
International Conference on the Mathematical Foundations of Computer Science (MFCS),
Lecture Notes in Computer Science, vol. 711, pp. 311–320. Berlin Heidelberg New York:
Springer 1993

[CC2] Cai L., Chen J.: Fixed-parameter tractability and approximability ofNP-hard optimization
problems. Proc. Israeli Conf. on Theory of Computing and Systems (1993), 118–126

[CCDF] Cai L., Chen J., Downey R.G., Fellows M.R.: Advice classes of parameterized tractability.
Ann. Pure Appl. Logic (to appear)

[Da] Davis M.: Unsolvable Problems. In: Barwise J. (ed.) Handbook of Mathematical Logic,
p. 580. Amsterdam: Elsevier 1977

[DEF] Downey R.G., Evans P.A., Fellows M.R.: Parameterized learning complexity. Proc. Sixth
ACM Workshop on Computational Learning Theory (COLT), pp. 51–57. New York: ACM
Press 1993

[DF1] Downey R.G., Fellows M.R.: Fixed parameter tractability and completeness. Congr. Num.,
87, 161–187 (1992)

[DF2] Downey R.G., Fellows M.R.: Fixed parameter tractability and completeness I: Basic Re-
sults, SIAM J. Comput.24, 873–921 (1995)

[DF3] Downey R.G., Fellows M.R.: Fixed parameter tractability and completeness II. On com-
pleteness forW[1]. Theoretical Computer Science A141, 109–131 (1995)

[DF4] Downey R.G., Fellows M.R.: Fixed parameter intractability (extended Abstract). Proceed-
ings of the Seventh Annual IEEE Conference on Structure in Complexity Theory, pp.
36–49 (1992)

[DF5] Downey R.G., Fellows M.R.: Fixed parameter tractability and completeness III. Some
structural aspects of theW-hierarchy. In: Ambos-Spies K., Homer S., Schöning U. (eds.)
Complexity Theory, pp. 166–191. Cambridge: Cambridge University Press 1993

[DF6] Downey R.G., Fellows M.R.: Parameterized computational feasibility. In: Clote P., Remmel
J. (eds.) Feasible Mathematics II, pp. 219–244. Boston: Birkhäuser 1995

[DF7] Downey R.G., Fellows M.R.: Parameterized Complexity. Monograph in preparation
[FHW] Fellows M.R., Hallett M.T., Wareham H.T.: DNA physical mapping: Three ways difficult.

Proceedings of the First European Symposium on Algorithms. Lecture Notes in Computer
Science, vol.726, pp. 157–168. Berlin Heidelberg New York: Springer 1993

[FK] Fellows M.R., Koblitz N.: Fixed-parameter complexity and cryptography. In: in Proceed-
ings of the Tenth International Conference on Algebraic Algorithms and Error-Correcting
Codes (AAECC 10). Lecture Notes in Computer Science, vol.673, pp. 121–131. Berlin
Heidelberg New York: Springer 1993

[GJ] Garey M.R., Johnson D.S.: Computers and intractability: A guide to the theory ofNP-
completeness. San Francisco: Freeman 1979

[HM] Henglein F., Mairson H.G.: The complexity of type inference for higher-order typed
Lambda Calculi. In: Proc. Symp. on Principles of Programming Languages (POPL),
pp. 119–130 (1991)

[KT] Kolaitis P.G., Thakur M.N.: Approximation properties ofNP minimization classes. Proc.
6th Structure in Complexity Theory Conference, pp. 353–366 (1991)

[PY] Papadimitriou C.H., Yannakakis M.: On limited nondeterminism and the complexity of the
V-C dimension. Proccedings of the Eighth IEEE Conf. on Structure in Complexity Theory,
pp. 12–18. New York: IEEE Press 1993

