Computer Science 6789 (Winter 2014):
Assignment \#3
Due: 10:30 AM on Thursday, April 3, 2014

For each of the following parameterized problems, either prove that this problem is fixed-parameter tractable (by giving an fp-tractable algorithm) or prove that this problem is fp-intractable (by showing that it is either hard for or cannot be included in some class in the W-hierarchy above $F P T$). In the latter case, include reductions where appropriate and state any problem-classrelationships, e.g., $F P T \neq W[1]$, that are required to prove fp-intractability.

1. (15 marks)

$\{k\}$-Skolem Packing

Input: An undirected graph $G=(V, E)$ and a positive integer k.
Question: Does G have a Skolem packing of size $\leq k$, i.e., Is there a subset $E^{\prime} \subseteq E,\left|E^{\prime}\right| \leq k$, such that for each $e \in E$, either $e \in E^{\prime}$ or e shares an endpoint with at least one $e^{\prime} \in E^{\prime}$?

2. (15 marks)

$\{d\}-l$-Clique Configuration

Input: An undirected graph $G=(V, E)$ and positive integers k, l, and d.
Question: Does G contain a set C of at most $k l$-cliques such that each clique in C is connected by edges to at most d other cliques in C and each l-Clique in G is either in C or connected by an edge to a clique in C ?

3. (15 marks)

$\{k\}$-Erdös Subgraph

Input: An undirected graph $G=(V, E)$, a set S of subgraphs of G, and positive integers k and l.
Question: Is there a subgraph G^{\prime} of G containing at most k vertex- and edge-disjoint paths of length l such that each subgraph in S contains at least one of the length-l paths in G^{\prime} ?
4. (15 marks) Define a finite-state set transducer (FSST) $A=\langle Q, I, s, F, \delta\rangle$ as a finitestate automaton with state-set Q, item-set I, start-state $s \in Q$, accepting states $F \subseteq Q$, and state-transition relation $\delta \subseteq Q \times 2^{I} \times Q \times 2^{I}$ where 2^{I} is the set of all subsets of I. Informally, the computation of a FSST starts in state s with a given initial set $I_{0} \subseteq I$, and at each step with the FSST in state q and associated item-set $I^{\prime} \subseteq I$, executes a state-transition $\left(q, X, q^{\prime}, Y\right)$ if $X \subseteq I^{\prime}$ by re-setting the state to q^{\prime} and the associated item-set to $\left(I^{\prime}-X\right) \cup Y$. An FSST A accepts a subset $I^{\prime} \subseteq I$ if there is some sequence of transitions which, starting from s and $I_{0}=I^{\prime}$, result in some $f \in F$ and some $I^{\prime \prime} \subseteq I$.

$\{k\}$-FSST Computation

Input: An FSST $A=\langle Q, I, s, F, \delta\rangle$, set $I^{\prime} \subseteq I$, and a positive integer k.
Question: Can A accept I^{\prime} by executing a sequence of at most k transitions?

5. (15 marks)

$\{k, d\}$-Thue Convolution
Input: An undirected graph $G=(V, E)$ of maximum vertex-degree d and a positive integer k.

Question: Is there a subset $E^{\prime} \subseteq E,\left|E^{\prime}\right| \leq k$, such that for each $v \in V$, there is at least one edge in E^{\prime} with v as an endpoint?

Bonus Question (15 marks):

What is the parameterized complexity of $\{k,|I|\}$-FSST Computation? Prove your answer.

