Computer Science 6789 (Winter 2014):
Assignment \#2
Due: 10:30 AM on Thursday, March 6, 2014

1. (25 marks) Given the decision problems

Exact Set Cover (ESC)
Input: A base-set $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and a set $S=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ of subsets of U.
Question: Is there a subset S^{\prime} of the sets in S such that the sets in S^{\prime} are disjoint, i.e., for any two sets $S_{i}, S_{j} \in S^{\prime}, S_{i} \cap S_{j}=\emptyset$, and the union of the sets in S^{\prime} is U ?

Steiner Tree in Weighted Graphs (STG)
Input: A weighted undirected graph $G=(V, E, w)$, a set $V^{\prime} \subseteq V$, and an integer $k>0$. Question: Is there a subtree $T=\left(V_{T}, E_{T}\right)$ of G such that $V^{\prime} \subseteq V_{T}$ and $\sum_{e \in E_{T}} w(e) \leq k$? consider the following proposed many-one polynomial-time reduction:
$\mathbf{E S C} \propto \mathbf{S T G}:$ Given an instance $\langle U, S\rangle$ of ESC, construct the following instance $\left\langle G=(V, E, w), V^{\prime}, k\right\rangle$ of STG: Let $V=\left\{n_{0}\right\} \cup\left\{S_{j}\right\} \cup\left\{u_{i}\right\}, E=\left\{\left(n_{0}, S_{j}\right)\right\} \cup$ $\left\{\left(S_{j}, u_{i}\right) \mid u_{i} \in S_{j}\right\}, w\left(\left(n_{0}, S_{j}\right)\right)=\left|S_{j}\right|$ and $w\left(\left(S_{j}, u_{i}\right)\right)=0, V^{\prime}=\left\{n_{0}\right\} \cup\left\{u_{i}\right\}$, and $k=|U|$.

For example, given an instance of ESC in which $U=\{a, b, c, d, e\}$ and $S=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ where $S_{1}=\{a, c, d\}, S_{2}=\{b, e\}, S_{3}=\{a, e\}$, and $S_{4}=\{c\}$, the reduction produces the following instance of STG (note that all edges without explicitly stated weights have weight $0)$:

Observe that the given instance of ESC has the solution $\left\{S_{1}, S_{2}\right\}$ which corresponds to the tree T in the constructed instance of STG with $V_{T}=\left\{n_{0}, S_{1}, S_{2}, a, b, c, d, e\right\}, E_{T}=$ $\left\{\left(n_{0}, S_{1}\right),\left(n_{0}, S_{2}\right),\left(S_{1}, a\right),\left(S_{1}, c\right)\right.$,
$\left.\left(S_{1}, d\right),\left(S_{2}, b\right),\left(S_{2}, e\right)\right\}$, and $\sum_{e \in E_{T}} w(e)=3+2+0+0+0+0+0=5=|U|$.
(a) ($\mathbf{1 0}$ marks) Prove that this reduction is incorrect by giving a counterexample such that the given instance of ESC and the constructed instance of STG have different answers.
(b) (15 marks) Give a many-one polynomial time reduction from the following problem to STG:

Minimum Set Cover (MSC)

Input: A set $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, a set $S=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ of subsets of U, and an integer k.
Question: Is there a subset S^{\prime} of S such that $\left|S^{\prime}\right| \leq k$ and the union of the sets in S^{\prime} is U ?

Briefly discuss why your reduction is correct by showing that a given instance of MSC has answer "yes" if and only if the instance of STG constructed by the reduction from this given instance has answer "yes".
2. (20 marks) Prove the following:
(a) (10 marks) Fixed-paramneter reducibility is transitive, i.e., if $\{k\}$ - \mathbf{X} fp-reduces to $\left\{k^{\prime}\right\}-\mathbf{Y}$ and $\left\{k^{\prime}\right\}-\mathbf{Y}$ fp-reduces to $\left\{k^{\prime \prime}\right\}$ - \mathbf{Z} then $\{k\}$ - \mathbf{X} fp-reduces to $\left\{k^{\prime \prime}\right\}$ - \mathbf{Z}.
(b) (10 marks) If $\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}$ - \mathbf{X} fp-reduces to $\left\{k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{n}^{\prime}\right\}-\mathbf{Y}$ and $\left\{k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{n}^{\prime}\right\}$ \mathbf{Y} is fp-tractable then $\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}-\mathbf{X}$ is fp-tractable.
3. (75 marks) For each of the following parameterized problems, either prove that this problem is fixed-parameter tractable (by giving an fp-tractable algorithm) or prove that this problem is fp-intractable (by showing that it is either hard for or cannot be included in some class in the W-hierarchy above $F P T$). In the latter case, include reductions where appropriate and state any problem-class-relationships, e.g., $F P T \neq W[1]$, that are required to prove fp-intractability.
(a) (15 marks)
$\{k\}$-Dominating l-Clique-Set
Input: An undirected graph $G=(V, E)$ of maximum vertex-degree d and a positive integers k and $l, k>0$ and $l \geq 3$.
Question: Does G have a dominating l-clique-set of size k, i.e., is there a set of k cliques of size l in G such that for every clique c in G of size l, either c is in this subset or some vertex in c is connected by an edge to a vertex in some clique in this subset?
(b) (15 marks)

$\{l\}$-DPCLIQUE

Input: An undirected graph $G=(V, E)$ and positive integers k and l.
Question: Is there a subset $V^{\prime} \subseteq V$ such that $\left|V^{\prime}\right| \geq k$, there is a simple path in G between each pair of vertices in V^{\prime} that contains at most l edges, and all of these paths are disjoint, i.e., none of the simple paths between any two pairs of vertices in V^{\prime} share an edge?

(c) (15 marks)

$\{d, k\}$-Hypergraph c-cover
Input: A set of vertices V, a set E of subsets of V of size at most $d \geq 3$, and positive non-zero integers k and c.
Question: Is there a subset $V^{\prime} \subseteq V,\left|V^{\prime}\right| \leq k$, such that for each $e \in E,\left|e \cap V^{\prime}\right| \geq c$?
(d) ($\mathbf{1 5}$ marks)

$\{l\}$-Simple Path Number

Input: A cubic undirected graph $G=(V, E)$, a pair of vertices u and v in G, and and a positive integer l.
Question: Is the number of simple paths of length $\leq l$ between u and v in G at most k ?
A graph is cubic if each vertex in the graph has degree three.
(e) ($\mathbf{1 5}$ marks)
$\{k\}$-Steiner Subgraph
Input: An undirected graph $G=(V, E)$, a subset $S \subset V$, and a positive integer k.
Question: Is there a subset $T \subset V-S,|T| \leq k$, such that the graph $G^{\prime}=(S \cup T,\{(u, v)$: $u, v \in S \cup T$ and ($\mathrm{u}, \mathrm{v}) \in \mathrm{E}\})$ is connected?

Bonus Questions:

B1: (15 marks) What is the parameterized complexity of $\{k, l\}$-Dominating l-Clique-Set? Give a proof of your answer.

B2: (15 marks) What is the computational complexity of Simple Path Number? Give a proof of your answer.

