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Abstract

We describe the algorithmic and software design principles of an object-oriented
library for weighted finite-state transducers. By taking advantage of the theory of
rational power series, we were able to achieve high degrees of generality, modular-
ity and irredundancy, while attaining competitive efficiency in demanding speech
processing applications involving weighted automata of more than 107 states and
transitions. Besides its mathematical foundation, the design also draws from impor-
tant ideas in algorithm design and programming languages: dynamic programming
and shortest-paths algorithms over general semirings, object-oriented programming,
lazy evaluation and memoization.

Key words: Weighted automata; finite-state transducers; rational power series;
speech recognition.

1 Introduction

Finite-state techniques have proven valuable in a variety of natural-language
processing applications [5–11,14,16,18,20,28,33,36,38,39]. However, speech pro-
cessing imposes requirements that were not met by any existing finite-state
library. In particular, speech recognition requires a general means for manag-
ing uncertainty: all levels of representation, and all mappings between levels,
involve alternatives with different probabilities, since there is uncertainty in
the interpretation of the speech signal at all levels. Previous speech recognition
algorithms and systems relied on “ad hoc” methods for combining finite-state
representations with uncertainty. However, by taking advantage of the the-
ory of rational power series, we were able to develop a library for building
and applying weighted finite-state transducers that can represent together all
the finite-state and uncertainty management operations in speech recognition
while creating the opportunity for hitherto unrecognized optimizations and
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achieving competitive or superior performance in many speech recognition
tasks [23,24,31].

This paper focuses on the overall design of the library starting from its math-
ematical foundation, rather than on specific algorithms or applications, which
have been described elsewhere [18,21,23–25,27,31]. Although our initial mo-
tivation was to improve the tools available for speech recognition, we aimed
always for the highest degree of generality compatible with the mathemati-
cal foundation and with the efficiency demands of the application. By basing
our datatypes on the least restrictive algebraic structures compatible with the
desired algorithms, we were able to avoid redundant implementations of the
same generic algorithm on related but distinct datatypes, thus creating a de-
sign with a minimal, highly modular core of algorithms. In addition, by using
mathematically-defined datatypes, we can abstract away from implementation
details in most of the user-visible parts of the library, while being able to sup-
port a variety of implementations with different performance characteristics
for datatypes and operations.

One of the central tasks of program design is to factor the task under study
into algorithm and data structures. We suggest here a mathematical analogue
of that principle: the separation of algebra and algorithms. In other words, our
algorithms should be designed to work in as general an algebraic structure as
possible.

We start by outlining the mathematical foundation for the library in Section 2.
Operating at the higher level of generality of weighted finite-state transducers
requires new algorithms that are not always straightforward extensions of the
corresponding classical algorithms for unweighted automata, as discussed in
Section 3.1. In particular, we use the example of ε-removal in Section 3.2 to
illustrate how that higher level of generality can be attained efficiently by
using general shortest-paths computations over semirings.

The efficiency of the library in some applications depends crucially on delaying
the full computation of operation results until they are needed. While this
idea had been used in previous finite-state tools, for instance the on-demand
determinization in egrep [2], our library uses lazy evaluation for all operations
satisfying certain locality constraints, as explained in Section 3.3.

These mathematical and algorithmic considerations led to a set of general op-
erations on a simple and general automaton datatype with a range of possible
implementations, which are discussed in Section 4.

Finally, in Section 5, we present in more detail the requirements and current
status of our main application, speech recognition, and illustrate with an ap-
plication of the library to a simplified version of a typical speech-processing
task.
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2 Mathematical Foundations

The generality of our library derives from the algebraic concepts of rational

power series and semiring. A semiring (K,⊕,⊗, 0̄, 1̄) is a set K equipped with
two binary operations ⊕ and ⊗ such that (K,⊕, 0̄) is a commutative monoid,
(K,⊗, 1̄) is a (possibly non-commutative) monoid, ⊗ distributes over ⊕, and
0̄ ⊗ x = x ⊗ 0̄ = 0̄ for any x ∈ K. Informally, a semiring is a ring that may
lack negation. In the following, we will often call weights to the elements of a
semiring.

A formal power series S : x 7→ (S, x) is a function from a free monoid Σ∗

to a semiring K. Rational power series are those formal power series that
can be built by rational operations (concatenation, sum and Kleene closure)
from the singleton power series given by (S, x) = k, (S, y) = 0̄ if x 6= y for
x ∈ Σ∗, k ∈ K. The rational power series are exactly those formal power series
that can be represented by weighted automata [35].

Weighted automata are a generalization of the notion of automaton: each
transition of a weighted automaton is assigned a weight in addition to the
usual label(s). More formally, a weighted acceptor over a finite alphabet Σ
and a weight semiring K is a finite directed graph with nodes representing
states and arcs representing transitions in which each transition t is labeled
with an input i(t) ∈ Σ and a weight w(t) ∈ K. Furthermore, each state q
has an initial weight λ(q) ∈ K and a final weight ρ(q) ∈ K. In a weighted
transducer, each transition t has also an output label o(t) ∈ ∆∗ where ∆ is
the transducer’s output alphabet. A state q is initial if λ(q) 6= 0̄, and final if
ρ(q) 6= 0̄. 1

A weighted acceptor A defines a rational power series S(A) as follows. For each
input string x, let P (x) be the set of transition paths p = t1 · · · tnp

from an
initial state ip to a final state fp such that x = i(t1) · · · i(tnp

). Each such path

assigns x the weight w(p) = λ(ip) ⊗
(

⊗

j w(tj)
)

⊗ ρ(fp). A similar definition

can be given for a weighted transducer T , except that S(T ) is now a rational
power series over a semiring of rational power series, those mapping transducer
output strings to weights [34].

Most of the algorithms of our library work with arbitrary semirings or with
semirings from mathematically-defined subclasses (closed semirings, positive

1 For convenience of implementation, and without loss of generality (initial weights
can be simulated with ε transitions), the automata supported by the library have
a single initial state, with initial weight 1̄. Also, we allow the input label of a
transition to be ε and restrict output labels to ∆∪ {ε} for practical reasons related
to the efficient implementation of rational operations and composition. As is well
known, the theory can be extended to cover those cases.
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Fig. 1. Determinization over (R,+, ·, 0, 1).

min-semirings [19]). To instantiate the library for a particular semiring K,
we just need to give computational representations for the semiring elements
and operations. Library algorithms, for instance composition, ε-removal, de-
terminization and minimization, work without change over different semirings
because of their foundation in the theory of rational power series.

For example, the same power-series determinization algorithm and code [18]
can be used to determinize transducers [17], weighted transducers, weighted
automata encountered in speech processing [23] and weighted automata using
the probability operations. To do so, one just needs to use the algorithm with
the string semiring (Σ∗ ∪ {∞},∧, ·,∞, ε) [21] in the case of transducers, with
the semirings (R, +, ·, 0, 1) and (R+, min, +,∞, 0) in the other cases, and with
the cross product of the string semiring and one of these semirings in the case
of weighted transducers. Figure 1 shows a weighted acceptor over (R, +, ·, 0, 1)
and its determinization.

3 Algorithms

3.1 Weighted Automata Algorithms

Although algorithms for weighted automata are closely related to their better-
known unweighted counterparts, they differ in crucial details. One of the im-
portant features of our finite-state library is that most of its algorithms operate
on general weighted automata and transducers.

We briefly outlined in the previous section the mathematical foundation for
weighted automata, and how it allows us to write general algorithms that are
independent of the underlying algebra. Thanks to this generality, weights may
be numbers, but also strings, sets, or even regular expressions. Depending on
the algorithms, some restrictions apply to the semirings used. For instance,
some algorithms require commutative semirings, meaning that ⊗ is commuta-
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Fig. 2. Weighted automaton and its ε-removal

tive; others require closed semirings, in which infinite addition is defined and
behaves like finite addition with respect to multiplication.

Shortest-paths algorithms play an essential role in applications, being used
to find the “best” solution in the set of possible solutions represented by an
automaton (for instance, the best string alignment or the best recognition
hypothesis), as we shall see in Section 5.1. Therefore, we developed a gen-
eral framework for single-source shortest-paths algorithms based on semirings
that leads to a single generic algorithm [19]. This generic algorithm computes
the single-source shortest distance when weights are numbers, strings, or sub-
sets of a set. These different cases are related to the computation of minimal
deterministic weighted automata [21].

Since the general framework for solving all pairs shortest-paths problems —
closed semirings — is compatible with the abstract notion of weights we use,
we were able to include an efficient version of the generic algorithm of Floyd-
Warshall [1,3] in our library. Using the same algorithm and code, we can
provide the all-pairs shortest distances when weights are real numbers repre-
senting, for example, probabilities, but also when they are strings or regular
expressions. This last case is useful to generate efficiently a regular expression
equivalent to a given automaton. The Floyd-Warshall algorithm is also useful
in the general ε-removal algorithm we will now present as an example.

3.2 Example: ε-Removal

Figure 3 shows the pseudocode of a generic ε-removal algorithm for weighted
automata. Given a weighted automaton Mi, the algorithm returns an equiva-
lent weighted automaton Mo without ε-transitions. TransM [s] denotes the set
of transitions leaving state s in automaton M , Next(t) denotes the destination
state of transition t, i(t) denotes its input label, and w(t) its weight. Lines 1
and 2 extract from Mi the subautomaton Mε containing all ε transitions in Mi
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1 Mε ←Mi|{ε}

2 Mo ←Mi|Σ∗

−{ε}

3 Gε ← Closure(Mε)

4 for p← 1 to |V |

5 do for each e ∈ TransGε
[p]

6 do for each t ∈ TransMi
[Next(e)] ∧ i(t) 6= ε

7 do t′ ← FindTrans(i(t), Next(t), TransMo
[p])

8 w(t′)← w(t′)⊕ λ(t)⊗ λ(e)

Fig. 3. Pseudocode of the general ε-removal algorithm.

and the subautomaton Mo containing all the non-ε transitions. Line 3 applies
the general all-pairs shortest distance algorithm Closure to Mε to derive the
ε-closure Gε. The nested loops starting in lines 4, 5 and 6 iterate over all pairs
of an ε-closure transition e and a non-ε transition t such that the destination
of e is the source of t. Line 7 looks in Mo for a transition t′ with label i(t) from
e’s source from t’s destination if it exists, or creates a new one with weight
0̄ if it does not. This transition is the result of extending t “backwards” with
the Mi ε-path represented by ε-closure transition e. Its weight, updated in
line 8, is the semiring sum of such extended transitions with a given source,
destination and label.

In most speech-processing applications, the appropriate weight algebra is the
tropical semiring [37]. Weights are positive real numbers representing negative
logarithms of probabilities. Weights along a path are added; when several paths
correspond to the same string, the weight of the string is the minimum of the
weights of those paths. Figure 2 illustrates the application of ε-removal to
weighted automata over the tropical semiring. The example shows that the
new algorithm generalizes the classical unweighted algorithm by ensuring that
the weight of any string accepted by the automaton is preserved in the ε-free
result.

As noted before, the computation of the ε-closure requires the computation of
the all-pairs shortest distances in Mε. In the case of idempotent semirings such
as the tropical semiring, the most efficient algorithm available is Johnson’s al-
gorithm which is based on the algorithms of Dijkstra and Bellman-Ford [3].
The running time complexity of Johnson’s algorithm is O(|Q|2 log |Q|+|Q||E|)
when using Fibonacci heaps, but we use instead the more general but less effi-
cient Floyd-Warshall algorithm because it supports non-idempotent semirings.
When Mε is acyclic, we use the linear time topological-sort algorithm, which
also works with non-idempotent semirings.
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Fig. 4. Composition Inputs

Our implementation of the algorithm is in fact somewhat more complex: we
first decompose Mε into strongly connected components, apply the Floyd-
Warshall algorithm to each component, and then apply the acyclic algorithm
to the component graph of Mε to compute the final result.

Our choice of the most general implementation was also guided by experimen-
tation: in practice, each strongly connected components of Mε is small relative
to Mε’s overall size, and therefore the use of the Floyd-Warshall algorithm does
not seriously impact efficiency.

3.3 Lazy Algorithms

Most of the library’s main functions have lazy implementations, meaning that
their results are computed only as required by the operations using those re-
sults. Lazy execution is very advantageous when a large intermediate automa-
ton is constructed in an application but only a small part of the automaton
needs to be visited for any particular input to the application. For instance,
in a speech recognizer, several weighted transducers — the language model,
the dictionary, the context-dependent acoustic models — are composed into a
potentially huge transducer, but only a very small part of it is searched when
processing a particular utterance [31].

The main precondition for a function to have a lazy implementation is that
the function be expressible as a local computation rule, in the sense that the
transitions leaving a particular state in the result be determined solely by their
source state and information from the function’s arguments associated to that
state. For instance, composition has a lazy implementation, as we will see in
Section 3.4 below. Similarly, union, concatenation and Kleene closure can be
computed on demand, and so does determinization.

3.4 Example: Lazy Composition

Composition generalizes acceptor intersection. States in the composition T1◦T2

of T1 and T2 are identified with pairs of a state of T1 and a state of T2. Leaving
aside transitions with ε inputs or outputs for the moment, the following rule
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Fig. 6. Composition Output

specifies how to compute a transition of T1 ◦ T2 from appropriate transitions
of T1 and T2

(q1
a:b/w1

−→ q′1 and q2
b:c/w2

−→ q′2) =⇒ (q1, q2)
a:c/(w1⊗w2)
−→ (q′1, q

′
2)

where s
x:y/w
−→ t represents a transition from s to t with input x, output y and

weight w. Clearly, this computation is local, and can thus be used in a lazy
implementation of composition.

Transitions with ε labels in T1 or T2 add some subtleties to composition. In
general, output and input ε’s can be aligned in several different ways: an
output ε in T1 can be consumed either by staying in the same state in T2 or
by pairing it with an input ε in T2; an input ε in T2 can be handled similarly.
For instance, the two transducers in Figure 4 can generate all the alternative
paths in Figure 5. However, the single bold path is sufficient to represent the
composition result, shown separately in Figure 6. The problem with redundant
paths is not only that they increase unnecessarily the size of the result, but
also they fail to preserve path multiplicity : each pair of compatible paths in
T1 and T2 may yield several paths in T1 ◦ T2. If the weight semiring is not
idempotent, that leads to a result that does not satisfy the algebraic definition
of composition:

[[T1 ◦ T2]](u, w) =
⊕

v

[[T1]](u, v)⊗ [[T2]](v, w) .
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We solve the path-multiplicity problem by mapping the given composition
into a new composition

T1 ◦ T2 → T ′
1 ◦ F ◦ T ′

2

in which F is a special filter transducer and the T ′
i are versions of the Ti in

which the relevant ε labels are replaced by special “silent transition” symbols
εi. The bold path in Figure 5 is the only one allowed by the filter in Figure 7
for the input transducers in Figure 4.

Clearly, all the operations involved in the filtered composition are local, there-
fore they can be performed on demand, without needing perform explicitly
the replacement of Ti by T ′

i . More details on filtered composition can be found
elsewhere [22,27].

4 Software Design

Our library was designed to meet two important requirements:

• Algorithms that operate on automata should do it only through abstract
accessor and mutator operations, which in turn operate on the internal
representations of those automata.
• Algorithms that operate on weights should do it solely through abstract

operations that implement the weight semiring.

We motivate and describe these two requirements below. Furthermore, the
demanding nature of our applications imposes the constraint that these ab-
stractions add little computational burden compared to more specialized ar-
chitectures.

9



4.1 Finite-state Objects

Requiring algorithms to operate on automata solely through abstract acces-
sors and mutators has three benefits: it allows the internal representation of
automata to be hidden, it allows generic algorithms that operate on multiple
finite-state representations and it provides the mechanism for creating and
using lazy implementations of algorithms. To illustrate these points, consider
the core accessors supported by all automata classes in the library:

• fsm.start(), which returns the initial state of fsm;
• fsm.final(state), which returns the final weight of state in fsm;
• fsm.arcs(state), which returns an iterator over the transitions leaving state

in fsm. The iterator is itself an object supporting the next operation, which
returns (a pointer to) each transition from state in turn.

A state is specified by an integer index; a transition is specified by a structure
containing an input label, an output label, a weight and a next state index. 2

Clearly, a variety of automata implementations meet this core interface. As a
simple example, the transitions leaving a state could be stored in arrays or in
linked lists. By hiding the automaton’s implementation from its user we gain
the usual advantages of separating interfaces from implementations: we can
change the representation as we wish and, so long as we do not change the
object interface, the code that uses it still runs.

In fact, it proves very useful to have multiple automata implementations in
the same library. For example, one class of automata in the library provides
mutating operations such as adding states and arcs, by using an extensible
vector representation of states and transitions that supports efficient appends.
Another class, for read-only automata, uses fixed state and transition arrays
that can be efficiently memory-mapped from files. A third class, also read-
only, stores states and transitions in a compressed form to save space, and
uncompresses them on demand when they are accessed.

Our algorithms are written generically, in that they assume that automata
support the core operations above and as little else as necessary. For exam-
ple, some classes of automata support the fsm.numstates() operation that
returns fsm’s number of states, while others do not (we will see an example
in a moment). Where possible and reasonably efficient, we write our algo-
rithms to avoid using such optional operations. In this way, they will work
on any automaton class. On the other hand, if it is really necessary to use
fsm.numstates(), then at least all automata classes that support that opera-

2 Using integer indices allows referring to states that may not have yet been con-
structed in automata being created by lazy algorithms.
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tion will work. 3 4

The restricted set of core operations above was motivated by the need to
support lazy implementations of algorithms. In particular, the operations are
local if we accept the convention that no state should be visited that has not
been discovered from the start state. Thus the automaton object that lies
behind this interface need not have a static representation. For example, we
can implement the result of the composition of two automata A and B as a
delayed composition automaton C = FSMCompose(A, B). When C.start() is
called, the start state can be constructed on demand by first calling A.start()
and B.start() and then pairing these states and hashing the pair to a new
constructed state index, which C.start() returns. Similarly, C.final() and
C.arcs() can be computed on-demand by first calling these operations on A
and B and then constructing the appropriate result for C to return. If we had
included numstates as a core operation, the composition would have to be
fully expanded immediately to count its number of states. Since a user might
do this inadvertently, we do not provide that operation for automata objects
resulting from composition. 5 The core operations, in fact, can support lazy
automata with an infinite number of states, so long as only a finite portion of
such automata is traversed.

To achieve the required efficiency for the above interface, we ensure that each
call to the transition iterator involves nothing more than a pointer increment
in the automata classes intended for demanding applications such as speech
recognition. Since most of the time used for automata operations in those
applications is spent iterating over the transitions leaving various states, that
representation is usually effective.

4.2 Weight Objects

As mentioned earlier, many of the algorithms in our library will work with a
variety of weight semirings. Our design encourages writing algorithms over the
most general semiring by making the weights an abstract type with suitable
addition and multiplication operations and identity elements. In this way, we
can switch between, say, the tropical semiring and the probability semiring by

3 For those that do not, our current C implementation will issue a run-time error,
while run-time type-checking can be used to circumvent such errors. In our new
C++ version, we will use compile-time type-checking where possible.
4 This design philosophy has some similarities with that of other modern software
toolkits such as the C++ Standard Template Library [26].
5 The user can always copy this lazy automaton into an instance of a static au-
tomata class that supports the numstates operation. In other words, we favor ex-
plicit conversions to implicit ones.
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just using a different implementation of the abstract type. For efficiency, the
weight operations are represented by macros in our C version and by inline
member functions in the C++ version under development.

4.3 Coverage

The library operates on weighted transducers; weighted acceptors are repre-
sented as restrictions of the identity transducer to the support of the acceptor.
In our chosen representation, weighted automata have a single initial state;
whether a state is accepting or not is determined by the state’s final weight.
The library includes:

Rational operations: union, concatenation, Kleene closure, reversal, inver-
sion and projection;

Composition: transducer composition [22], and acceptor intersection, as well
as taking the difference between a weighted acceptor and an unweighted
DFA;

Equivalence transformations: ε-elimination, determinization [17,18] and
minimization for unweighted (both the general case [1] and the more efficient
acyclic case [29]) and weighted acceptors and transducers [15,18], removal
of inaccessible states and transitions;

Search: best path, n-best paths, pruning (remove all states and transitions
that occur only on paths of weight greater by a given threshold than the
best path);

Representation and storage management: create and convert among au-
tomata representations with different performance tradeoffs; also, as dis-
cussed in Section 3.3, many of the library functions can have their effects
delayed for lazy execution, and functions are provided to cache and force
delayed objects, inspired by similar features in lazy functional programming.

In addition, a comprehensive set of support functions is provided to manipulate
the internal representations of automata (for instance, topological sorting), for
converting between internal and external representations, and for accessing
and mutating the components of an automaton (states, transitions, initial
state and accepting weights).

For convenient experimentation, each of the library’s main functions has a
Unix shell-level counterpart that operates between external automata repre-
sentations, allowing the expression of complex operations on automata as shell
pipelines. The concrete example in the next section is presented in terms of
those commands for simplicity.
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5 Language processing applications

As noted in Section 1, finite-state methods have been used very successfully
in a variety of language-processing applications. However, until we developed
our library, those applications had not included speech speech recognition.

Current speech-recognition systems rely on a variety of probabilistic finite-
state models, for instance n-gram language models [30], multiple-pronunciation
dictionaries [13], and context-dependent acoustic models [12]. However, most
speech recognizers do not take advantage of the shared properties of the infor-
mation sources they use. Instead, they rely on special-purpose algorithms for
specific representations. That means that the recognizer has to be rewritten
if representations are changed for a new application or for increased accuracy
or performance. Experiments with different representations are therefore dif-
ficult, as they require changing or even completely replacing fairly intricate
recognition programs.

This situation is not too different from that in programming-language parsing
before lex and yacc [2]. Furthermore, specialized representations and algo-
rithms preclude certain global optimizations based on the general properties of
finite-state models. Again, the situation is similar to the lack of general meth-
ods in programming-language parsing before the development of the theory
of deterministic context-free languages and of general grammar optimization
techniques based on it.

As noted in Section 1, in speech recognition it is essential that alternative
ways of generating or transforming a string be weighted by the likelihood
of that generation or transformation. Therefore, the crucial step in applying
general finite-state techniques to speech recognition problems was to move
from regular languages to rational power series, from unweighted to weighted
automata. 6 The main challenges in this move have been the generalization
of core algorithms to the weighted case, and their implementation with the
degree of efficiency required in speech recognition.

5.1 Simple Example: Alignment

As a simple example of the use of the library in speech processing, we show
how to find the best alignment between two strings using a weighted edit
distance, which can be applied for instance to finding the best alignment
between the dictionary phonetic transcription of a word string and the acoustic
(phone) realization of the same word string, as exemplified in Figure 8. Figure 9

6 Weighted acceptors and transducers have also been used in image processing [4].
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Baseform Phone Word

p pr purpose

er er

p pcl

- pr

ax ix

s s

ae eh and

n n

d -

r r respect

ih ix

s s

p pcl

- pr

eh eh

k kcl

t tr

Fig. 8. String Alignment

Baseform Phone Weights Type

ai bj w(ai, bj)

ae eh 1 substitution

d ε 2 deletion

ε pr 1 insertion

Fig. 9. Weighted Edit Distance

shows a domain-dependent table of insertion, deletion and substitution weights
between phonemes and phones. In a real application, those weights would be
derived automatically from aligned examples using a suitable machine-learning
method [13,32]. The minimum edit distance between two strings can be simply
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defined by the recurrences

d(a0,b0) = 0

ds(a
i,bj) = d(ai−1,bj−1) + w(ai, bj) (substitution)

dd(a
i,bj) = d(ai−1,bj) + w(ai, ε) (deletion)

di(a
i,bj) = d(ai,bj−1) + w(ε, bj) (insertion)

d(ai,bj) = min{ds(a
i,bj) + dd(a

i,bj) + di(a
i,bj)}

The possible one symbol edits (insertion, deletion or substitution) and their
weights can be readily represented by a one-state weighted transducer. If the
transducer is in file T.fst and the strings to be aligned are represented by
acceptors A.fsa and B.fsa, the best alignment is computed simply by the
shell command

fsmcompose A.fsa T.fst B.fsa | fsmbestpath >C.fst

Abbreviated examples of the inputs and outputs to this command are shown
in Figure 10.

The correctness of this implementation of minimum edit distance alignment
depends on the use of suitable weight combination rules in automata com-
position, specifically those of the tropical semiring, which was discussed in
Section 3.2.

Alignment by transduction can be readily extended to situations in which edits
involve longer strings or are context-dependent, as those shown in Figure 11. In
such cases, states in the edit transducer encode appropriate context conditions.
Furthermore, a set of weighted edit rules like those in Figure 11 can be directly
compiled into an appropriate weighted transducer [25].
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Baseform(s) Phone(s) Weights Type

ai bj w(ai, bj)

p pcl pr 1 expansion

eh m em 3 contraction

r eh ax r 2 transposition

t/V ′ V dx 0 context-dependency

Fig. 11. Generalized Weighted Edit Distance

6 Conclusion

We presented a very general finite-state library based on the notions of semir-
ing and of rational power series, which allowed us to use the same code for
a variety of different applications requiring different semirings. The current
version of the library is written in C, with the semiring operations defined
as macros. Our new version is being written in C++ to take advantage of
templates to support more general transition labels and multiple semirings in
a single application.

Our experience shows that it is possible and in fact sometimes easier to im-
plement efficient generic algorithms for a class of semirings than to implement
specialized algorithms for particular semirings. Similarly, lazy versions of al-
gorithms are often easier to implement than their traditional counterparts.

We tested the efficiency of our library by building competitive large-vocabulary
speech recognition applications involving very large automata (> 106 states,
> 107 transitions) [23,24,31]. The library is being used in a variety of speech
recognition and speech synthesis projects at AT&T Labs and at Lucent Bell
Laboratories.
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