
Compilation Methods of Minimal Acyclic

Finite-State Automata for Large Dictionaries�

Jorge Graña, Fco. Mario Barcala, and Miguel A. Alonso

Departamento de Computación, Facultad de Informática, Universidad de La Coruña
Campus de Elviña s/n, 15071 La Coruña, Spain
{grana,barcala,alonso}@dc.fi.udc.es

Abstract. We present a reflection on the evolution of the different meth-
ods for constructing minimal deterministic acyclic finite-state automata
from a finite set of words. We outline the most important methods, in-
cluding the traditional ones (which consist of the combination of two
phases: insertion of words and minimization of the partial automaton)
and the incremental algorithms (which add new words one by one and
minimize the resulting automaton on-the-fly, being much faster and hav-
ing significantly lower memory requirements). We analyze their main
features in order to provide some improvements for incremental con-
structions, and a general architecture that is needed to implement large
dictionaries in natural language processing (NLP) applications.

1 Introduction

Many applications of NLP, such as tagging or parsing a given sentence, can be
too complex if we directly deal with the stream of input characters forming the
sentence. Usually, a previous step of processing changes those characters into
a stream of higher level items (called tokens and that typically are the words
in the sentence), and obtains the candidate tags for these words rapidly and
comfortably. This previous step is called lexical analysis or scanning.
The use of finite-state automata to implement efficient scanners is a well-

established technique [1]. The main reasons for compressing a very large dictio-
nary of words into a finite-state automaton are that its representation of the set
of words is compact, and that looking up a word in the dictionary is very fast
(proportional to the length of the word) [4]. Of particular interest for NLP are
minimal acyclic finite-state automata, which recognize finite sets of words.
This kind of automata can be constructed in various ways [7]. This paper

outlines the most important methods and analyzes their main features in order
to propose some improvements for the algorithms of incremental construction.
The motivation of this work is to build a general architecture to handle suitably
two large Spanish dictionaries: the Galena lexicon (291,604 words with 354,007

� This work has been partially supported by the European Union (under FEDER
project 1FD97-0047-C04-02), by the Spanish Government (under project TIC2000-
0370-C02-01), and by the Galician Government (under project PGIDT99XI10502B).

B.W. Watson and D. Wood (Eds.): CIAA 2001, LNCS 2494, pp. 135–148, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

136 Jorge Graña et al.

possible taggings) and the Erial lexicon (775,621 words with 993,703 possible
taggings)1.
Section 2 describes our general model of dictionary and allows us to under-

stand the role of the finite-state automata here. In Sect. 3, we give the formal
definitions and explain how to establish a perfect hashing between the words and
their positions in the dictionary, simply by assigning a weight to each state [5].
Section 4 recalls a minimization algorithm owing to Revuz [6], which is based
on another property of the states: the height. Section 5 recalls the incremental
construction by Daciuk [2], which performs insertions and minimizations at the
same time, by storing in a register the states that will conform the final au-
tomaton. In Sect. 6, we combine weights and heights to improve the accesses to
the register, and compare our implementation with the previous ones. Section 7
presents the conclusion after analysing the data obtained.

2 Compact Modeling of a Dictionary

Many words in a dictionary are manually inserted by linguists to exhaustively
cover the invariant kernel of a language (articles, prepositions, conjunctions, etc.)
or the terminology of a specific field. But many other words can be captured from
annotated texts, making possible to obtain additional information, such as the
frequency of the word or the probability with respect to each of its possible tags.
This information is essential in some applications, e.g. stochastic tagging and
parsing.
Therefore, our first view of a dictionary is simply a text file, with the fol-

lowing line format: word tag lemma probability. Ambiguous words use one
different line for each possible tag. With no loss of generality, the words could
be alphabetically ordered. Then, in the case of the Galena lexicon, the point in
which the ambiguity of the word sobre appears could have this aspect2:

sobre P sobre 0.113229

sobre Scms sobre 0.00126295

sobre Vysps0 sobrar 0.0117647

For a later discussion, we say that the Galena lexicon has M = 291, 604 differ-
ent words, with L = 354, 007 possible taggings. This last number is precisely the
number of lines in the text file. The first tagging of sobre appears in the line
325, 611, but the word takes the position 268, 249 in the set of the M different
lexicographically ordered words.
Of course, this is not an operative version for a dictionary. Therefore, what

is important now is to provide a compiled version to compact this great amount
1 Galena is Generation of Natural Language Analyzers and Erial is In-
formation Retrieval and Extraction Applying Linguistic Knowledge. See
http://coleweb.dc.fi.udc.es for more information of both projects.

2 The tags come from the Galena tag set, which has a cardinal of T = 373 tags. The
meanings for the tags (and for the word sobre) is the following: P is preposition (on);
Scms is substantive, common, masculine, singular (envelope); and Vysps0 is verb, first
or third person, singular, present, subjunctive (to remain, to be superfluous).

Compilation Methods of Minimal Acyclic Finite-State Automata 137

of data, and also to guarantee an efficient access to it with the help of automata.
The compiled version is shown in Fig. 1, and its main elements are:

– The Word to Index function (explained later) changes a word into its relative
position in the lexicon (e.g. sobre into 268, 249).

– In a mapping array of size M + 1, this number is changed into the absolute
position of the word (e.g. 268, 249 into 325, 611).

– This new number is used to access the arrays of tags, lemmas and probabil-
ities, all of them of size L.

– The array of tags stores numbers, which are more compact than the names
of the tags. Those names can be recover from the tag set array, of size T .
The lexicographical ordering guarantees that the tags of a given word are
adjacent, but we need to know how many they are. For this, it is enough to
subtract the absolute position of the word from the value of the next cell
(e.g. 325, 614− 325, 611 = 3 tags). This is also valid to correctly access the
arrays of lemmas and probabilities.

– The array of lemmas also stores numbers. A lemma is a word that also has
to be in the lexicon. The number obtained by the Word to Index function
for this word is the number stored here, since it is more compact than the
lemma itself. The original lemma can be recovered by the Index to Word
function (explained later).

– The array of probabilities directly stores the probabilities. In this case, no
reduction is possible.

P

Vysps0

Scms

1

2

3

341

150

107

Index_to_Word

325,611

tags

1

2

3

1

2

3

268,249

 = 373

150

107

341

mapping tag set

T

= 354,007L

M + 1 L + 1

probabilities lemmas

325,611

325,614

0.113229

0.00126295

0.0117647 268,214

268,249

268,249

= 291,604M

sobresobrar sobre

sobre

Word_to_Index

Fig. 1. Compact modeling of a dictionary

138 Jorge Graña et al.

This is the most compact architecture for storing all the lexical information of the
words present in a dictionary, when this information involves specific features
of each word, such as the probability. Furthermore, this architecture is very
flexible: it is easy to incorporate new arrays for other additional data (such as
frequencies), or to remove the non-used ones (saving the corresponding space).
To complete this model, we only need the implementation of Word to Index

and Index to Word. Both functions operate over a special type of automata, the
numbered minimal acyclic finite-state automata described in the next section.

3 Numbered Minimal Acyclic Finite-State Automata

A finite-state automaton is defined by the 5-tuple A = (Q, Σ, δ, q0, F), where:

– Q is a finite set of states (the vertices of the underlying graph),
– Σ is a finite alphabet of the input symbols that conform the words (the
labels in the transitions of the graph),

– δ is a function of Q × Σ into 2Q defining the transitions of the automaton,
– q0 is the initial state (the entrance of the graph), and
– F is the subset of final states of Q (usually marked with thicker circles).

The state or set of states reached by the transition of label a of the state q is
denoted by q.a = δ(q, a). When this is only one state, i.e. when δ is a function
of Q×Σ into Q, the automaton is deterministic. The notation is transitive: if w
is a word then q.w denotes the state reached by using the transitions labelled
by each letter w1, w2, . . . , wn of w. A word w is accepted by the automaton
if q0.w is in F . We define L(A), the language recognized by an automaton A, as
the set of words w such that q0.w ∈ F . An acyclic automaton is one such that
the underlying graph is acyclic.
Deterministic acyclic automata are the most compact structure for recogniz-

ing finite sets of words. The ratios of compression are excellent and the recog-
nition times are linear with respect to the length of the word to be scanned.
The remaining sections of this paper will present several methods to obtain the
minimal deterministic acyclic automaton for any finite set of words.
However, this is not enough for our model of dictionaries. We need a mech-

anism to transform every word into a univocal numeric key and viceversa. This
transformation can easily be done if the automaton incorporates a weight for
each state, this weight being the cardinal of the right language of the state, i.e.
the number of substrings accepted from this state [5]. We refer to these automata
as numbered minimal deterministic acyclic finite-state automata.
Figure 2 shows the numbered minimal automaton that recognizes all the

forms of the English verbs discount, dismount, recount and remount3. The
assignment of the indexing weights can be done by a simple recursive traversal
of the automaton, when it has been correctly built and minimized.
Now, we can give the details of the functions that perform the hashing be-

tween the words in the lexicon and the numbers 1 toM (the size of the lexicon).
3 The symbol # denotes the end of string.

Compilation Methods of Minimal Acyclic Finite-State Automata 139

4 5 6 7 8 9 13

11 12

10

21

0

3

14
n to u

m

c e d

#

s

n

i g

i

sd

r e

#
16

8

88

4 4 4 4 4

1

11

1 1

8

Fig. 2. Numbered minimal acyclic finite-state automaton for the forms of the
verbs discount, dismount, recount and remount

The Word to Index function, shown in Fig. 5 of appendix A, starts working
with an index equal to 1 and travels over the automaton using the letters of
the word to scan. In every state of this path, the index is increased with the
indexing weight of the target state of all transitions lexicographically preceding
the transition used. If all the letters in the words have been processed and a final
state is reached, the index contains the numeric key of the word. Otherwise, the
function returns a value which indicates that the word is unknown.
The Index to Word function, shown in Fig. 4 of appendix A, starts working

with the index and performs the analogous steps of Word to Index in order
to deduce which transitions produce that index, and obtains the letters of the
searched word from the labels of those transitions.
In the automaton of Fig. 2, the individual hashing of each word is:

1 <-> discount 2 <-> discounted 3 <-> discounting 4 <-> discounts

5 <-> dismount 6 <-> dismounted 7 <-> dismounting 8 <-> dismounts

9 <-> recount 10 <-> recounted 11 <-> recounting 12 <-> recounts

13 <-> remount 14 <-> remounted 15 <-> remounting 16 <-> remounts

Note that M , in this case 16, is the indexing weight of the initial state and
corresponds to the total number of words recognized by the automaton.

4 Minimization Based on the Height Property

In this section we start the study of the most efficient methods of building min-
imal acyclic automata. The first structure that we could consider to implement
a scanner for a finite set of words is a tree of letters, which is itself an automaton
where the initial state is the root and the final states are the leaves. However, the
memory requirements of a tree are very high for large dictionaries4. Therefore,
we apply a minimization process to reduce the number of states and transitions.
A minimization process can always be performed on any deterministic finite-

state automaton, and the resulting automaton is equivalent, i.e. it recognizes the
4 The Galena lexicon would need more than a million nodes (states) to recognize the
291.604 different words

140 Jorge Graña et al.

2 3 4

1

5 6 7

80

2

3

a
b a

1

b a

b ca

ba c

c

Fig. 3. A non-minimal acyclic deterministic finite-state automaton

same language as the original one [4]. Furthermore, if the automaton is acyclic,
this process is simpler, as we will see through the rest of the paper.
On the other hand, and also due to the same memory requirements, it is not

convenient to build a dictionary by inserting all the words in a tree and then
obtaining the minimal automaton corresponding to that tree. Instead of this, it
is more advisable to perform several steps of insertion and minimization5.
In any case, to formally define the base of traditional minimization algo-

rithms [6], we need the following definitions. Two automata are equivalent if
they recognize the same language. Two states p and q are equivalent if the sub-
automaton with p as initial state and the one that starts in q are equivalent.
The opposite concept is that two states are non-equivalent or distinguished. If A
is an automaton, there exists a unique automatonM minimal by the number of
states, recognizing the same language, i.e. L(A) = L(M). An automaton with
no pair of equivalent states is minimal. Now, for a state s, we define its height
h(s) = max {|w| | s.w ∈ F}, i.e. the height of a state s is the length of the
longest path starting at s and leading to a final state. This function gives a
partition Π of Q. Πi denotes the set of states of height i. We say that the set
Πi is distinguished if no pair of states in Πi is equivalent.
In Fig. 3 we show an automaton recognizing the language L = {aaa, ab, abb,

baa, bb, bbb, cac, cc}. States of the same height are drawn on the same dotted
5 In [3] we describe how words must be properly inserted into an already minimized
partial automaton in order to avoid inconsistencies. The basic idea is to clone con-
flicting states that can give rise to unintentional insertions of words not present in the
original lexicon. Furthermore, we also give an empirical reasoning of the maximum
size of the automaton needed to obtain a reasonable balance between the number of
insertion-minimization steps and their duration.

Compilation Methods of Minimal Acyclic Finite-State Automata 141

line. This automaton is not minimal. States 2 and 3 of height 2 are equivalent.
We can collapse these states by removing one of them, e.g. state 2, and replacing
the target of its entering transitions by the other state, i.e. 1 a−→ 2 by 1 a−→ 3.
Now we can state the height property: if every Πj with j < i is distinguished,

then two states p and q in Πi are equivalent if and only if for any letter a in Σ
the equality p.a = q.a holds. The minimization algorithm by Revuz [6], in Fig. 6
of appendix A, follows from the height property. First we create a partition by
height which is calculated by a standard traversal of the automaton for which the
time complexity is O(t), where t is the number of transitions. If the automaton
is not a tree, some speedup can be realized with a flag showing that the height
of a state is already computed, and useless states which have no height can be
eliminated during the traversal. Then, every Πi is processed, from i = 0 to the
height of the initial state, by sorting the states according to their transitions and
collapsing equivalent states.
Using a sorting scheme with a time complexity O(f(e)), where e is the num-

ber of elements to sort, the algorithm of Fig. 6 minimizes an acyclic automaton
in

O(t+
h(q0)∑

i=0

f(|Πi|))

which is less than the minimization algorithm by Hopcroft for general finite-state
automata: O(n × logn), where n is the number of states [4].
This process needed 10 steps of insertion-minimization to build the minimal

acyclic automaton for theGalena lexicon (11,985 states and 31,258 transitions),
and took 29 seconds in a Pentium II 300 MHz. under Linux operating system.

5 Algorithms for Incremental Construction

As we have seen, traditional methods for constructing minimal acyclic automata
from a finite set of words consist of two phases: the first being to construct a tree
or a partial automaton, the second one being to minimize it. However, there are
methods of incremental construction able to perform minimization in-line, i.e.
at the same time as the words are inserted in the automaton [2]. These methods
are much faster and have significantly lower memory requirements.
To build the automaton one word at a time, we need to merge the process of

adding new words with the minimization process. There are two crucial questions
that must be answered:

1. Which states are subject to change when new words are added?
2. Is there a way to add new words such that we minimize the number of states
that may need to be changed during the addition of a word?

If the input data is lexicographically ordered, only the states that need to be
traversed to accept the previous word added to the automaton may change when
a new word is added. The rest of the automaton remains unchanged, because
a new word either:

142 Jorge Graña et al.

– begins with a symbol different from the first symbols of all words already
in the automaton (in this case, the beginning symbol of the new word is
lexicographically placed after those symbols); or

– it shares some initial symbols of the word previously added (in this case,
the algorithm locates the last state in the path of the common prefix and
creates a forward branch from that state, since the symbol on the label of
the new transition must be later in the alphabet than symbols on all other
transitions leaving that state).

Therefore, when the previous word is a prefix of the new word, the only states
that can change are the states in the path of the previous word that are not in
the path of the common prefix. The new word may share its ending with other
words already inserted, which means that we need to create links to some parts
of the automaton. Those parts, however, are not modified.
Now we describe the algorithm of incremental construction from a finite

set of words in the lexicographical order. This algorithm, which is shown in
Figs. 7 and 8 of appendix A, uses a structure called Register that always keeps
a representative state of every equivalence class of states in the automaton.
Therefore, the Register is itself the minimal automaton in every step.
The main loop of the algorithm reads subsequent words and establishes which

part of the word is already in the automaton (the Common Prefix), and which
is not (the Current Suffix). An important step is determining what the last
state in the path of the common prefix is (the Last State). If Last State already
has children, it means that not all states in the path of the previously added
word are in the path of the common prefix. In that case, by calling the function
Replace or Register, we let the minimization process work on those states in
the path of the previously added word that are not in the common prefix path.
Then we add to the Last State a chain of states that recognize the Current Suffix.
The function Replace or Register effectively works on the last child of

the argument state. It is called with the argument that is the last state in the
common prefix path (or the initial state in the last call). We need the argument
state to modify its transition in those instances in which the child is to be
replaced with another equivalent state that has already been registered. Firstly,
the function calls itself recursively until it reaches the end of the path of the
previously added word. Note that when it encounters a state with more than
one child, it always takes the last one. As the length of words is limited, so is the
depth of recursion. Then, returning from each recursive call, it checks whether
a state equivalent to the current state can be found in the register. If this is true,
then the state is replaced with the equivalent state found in the register. If not,
the state is registered as a representative of a new class. Note that this function
processes only those states belonging to the path of the previously added word,
and that those states are never reprocessed.
In the same paper [2], the authors also propose an incremental construction

method for unsorted sets of words, which is also based on the clonation of states
that become conflicting as new words are added. The method is slower and uses

Compilation Methods of Minimal Acyclic Finite-State Automata 143

more memory, but it is suitable when the sorting of the input data is complex
and time-consuming.

6 Improving the Access to the Register

During the incremental construction, the automaton states are either in the
register or on the path for the last added word. All the states in the register
are states in the resulting minimal automaton. Hence the temporary automaton
built during the construction has fewer states than the resulting automaton plus
the length of the longest word. As a result of this, the space complexity is O(n),
i.e. the amount of memory needed by the algorithm is proportional to n, the
number of states in the minimal automaton. This is an important advantage of
the algorithm.
With regard to the execution time, the algorithm presents two critical points

which are marked with boxes in Fig. 8 of appendix A. This means that the
time complexity will depend on the data structure implemented to perform the
searches of equivalent states and the insertions of new representative states in
the register. In [2], the authors suggest that, by using a hash table to implement
the register and its equivalence relations, the time complexity of those operations
can be made almost constant and equal to O(log n).
Unfortunately, such a hashing structure is not described, although it can be

deduced directly from the C++ implementation of the algorithm made freely
available by the authors at http://www.pg.gda.pl/~jandac/fsa.html. This
implementation took 3.4 seconds to build the minimal acyclic automaton for
the Galena lexicon (11,985 states and 31,258 transitions) and 11.2 seconds to
build the one for the Erial lexicon (52,861 states and 159,780 transitions), in
a Pentium II 300 MHz. under Linux operating system.
Here, instead of a detailed study of that code, we prefer to detail our own

implementation, since we think it automatically integrates some features that
are needed in the general architecture of dictionaries presented in Sect. 2, and
we have checked that is faster, as we will see later.
When a given state is subject to be replaced or registered, it must be com-

pared with the states already present in the register. Of course, we cannot com-
pare it with all these states, because the register becomes greater and greater
as we insert new words in the automaton. Then, we have to think again: When
are two states equivalent? We find the following answers for this question, each
of them constituting a new filter that leaves more and more states out of the
comparison process:

– Given two states, their heights have to be equal if the states are to be
equivalent. The height is not specifically needed either for the incremen-
tal algorithm or for the dictionary scheme, but it nevertheless constitutes an
effective filter.
Furthermore, the height is a relatively low number (ranging between 0 and
the length of the longest word), and it can be calculated in-line with no extra

144 Jorge Graña et al.

traversal of the automaton (the length of a state is the maximum length of
the target states of its outgoing transitions plus one).

– Given two states, the number of their outgoing transitions have to be also
equal if the states are to be equivalent. This number is needed in order
to construct the automaton correctly, and is also a relatively low number
(ranging from 1 to the size of the alphabet used).

– Given two states, their weights have to be also equal if the states are to be
equivalent. The weight is needed for the dictionary scheme, so it is a good
idea to calculate it during the construction of the automaton (this is also
possible since the weight of a state is the sum of the weights of the target
states of its outgoing transitions).
Of course, the range of possible values for the weight of a given state may
be very high (ranging from 1 to the size of the lexicon), but empirical checks
tell us that the most frequent weights are also relatively low numbers.

Therefore, our implementation of the register is a three-dimensional array which
can be accessed by height, the number of outgoing transitions and weight. Each
cell of this array contains the list of states that share this three features6. When
a state is subject to being replaced or registered, we consider its features and it is
only compared with the states in the corresponding list. Only then we verify the
symbols of the labels of the outgoing transitions and their target states, which
have to be equal if the states are to be equivalent.
When using our implementation of the incremental algorithm, the time

needed to build the automaton of the Galena lexicon is reduced to 2.5 seconds.
It takes an extra 4.6 seconds time to incorporate the information regarding tags,
lemmas and probabilities, thus giving us a total compilation time of 7.1 seconds.
In the case of the Erial lexicon, the equivalent times are 9.2 + 15.6 = 24.8
seconds.
Finally, it should be noted that the recognition speed of our automata is

around 80,000 words per second. This figure is also an improvement on that
obtained when using [2], which reaches 35,000 words per second.
The only explanation we can find for this improvement is that we have also

managed to produce a more efficient internal architecture for automata. The
description of this internal representation lies outside the scope of this paper,
but any requests for further information on this subject are welcome.

7 Conclusion

Through an in-depth study of the different methods for constructing acyclic
finite-state automata, we have presented two main contributions for handling
suitably large sets of words in the NLP domain. The first has been to design
a general architecture for dictionaries, which is able to store the great amount
6 This is actually only true for states with weights between 1 and 15, this being
empirically the most frequents. States with greater weights are stored in a separate
set of lists. Nevertheless, the lists in this latter set are also ordered by weight.

Compilation Methods of Minimal Acyclic Finite-State Automata 145

of lexical data related to the words. We have shown that it is the most compact
representation when we need to deal with very specific information of these words
such as probabilities, this scheme being particularly appropriate for stochastic
NLP applications.
In a natural way, the second contribution completes our model of dictio-

naries by improving the incremental methods for constructing minimal acyclic
automata. In incremental constructions, since parts of the dictionary that are
already constructed (i.e. the states in the register) are no longer subject to future
change, we can use other specific features of states in parallel. These features are
sometimes inspired in the working mechanisms of our architecture for dictionar-
ies (e.g. indexing weights) and sometimes in the base of other algorithms (e.g.
heights). All of them allow us to improve the access to the registered parts and
check equivalences with the new states very rapidly. In consequence, the total
construction time of these minimal automata is less than that of those previous
algorithms.

References

[1] Aho, A.V.; Sethi, R.; Ullman, J. D. (1985). Compilers: principles, techniques and
tools. Addison-Wesley, Reading, MA. 135

[2] Daciuk, J.; Mihov, S.; Watson, B.W.; Watson, R.E. (2000). Incremental con-
struction of minimal acyclic finite-state automata. Computational Linguistics,
vol. 26(1), pp. 3-16. 136, 141, 142, 143, 144

[3] Graña Gil, J. (2000). Robust parsing techniques for natural language tagging
(in Spanish). PhD. Thesis, Departamento de Computación, Universidad de La
Coruña (Spain). 140

[4] Hopcroft, J. E.; Ullman, J. D. (1979). Introduction to automata theory, languages
and computations. Addison-Wesley, Reading, MA. 135, 140, 141

[5] Lucchesi, C. L.; Kowaltowski, T. (1993). Applications of finite automata represent-
ing large vocabularies. Software - Practice and Experience, vol. 23(1), pp. 15-30.
136, 138

[6] Revuz, D. (1992). Minimization of acyclic deterministic automata in linear time.
Theoretical Computer Science, vol. 92(1), pp. 181-189. 136, 140, 141

[7] Watson, B.W. (1993). A taxonomy of finite automata construction algo-
rithms. Computing Science Note 93/43, Eindhoven University of Technology,
(The Netherlands). 135

146 Jorge Graña et al.

A Pseudo-Code of the Main Algorithms

We give in this appendix the figures with the details of all the algorithms cited
in the paper.

function Index to Word (Index) =
begin

Current State← Initial State;
Number ← Index;
Word← Empty Word;
i← 1;

repeat
for c← First Letter to Last Letter do

if (V alid T ransition (Current State, c)) then
begin

Auxiliar State← Current State[c];
if (Number > Auxiliar State.Number) then

Number ← Number − Auxiliar State.Number
else

begin
Word[i]← c;
i← i + 1;
Current State← Auxiliar State;
if (Is F inal State (Current State)) then

Number ← Number − 1;
exit forloop

end
end

until (Number = 0);

return Word
end;

Fig. 4. Pseudo-code of function Index to Word

Compilation Methods of Minimal Acyclic Finite-State Automata 147

function Word to Index (Word) =
begin

Index← 1;
Current State← Initial State;

for i← 1 to Length (Word) do
if (V alid T ransition (Current State,Word[i])) then

begin
for c← First Letter to Predecessor (Word[i]) do

if (V alid T ransition (Current State, c)) then
Index← Index + Current State[c].Number;

Current State← Current State[Word[i]];
end

else
return unknown word;

if (Is F inal State (Current State)) then
return Index

else
return unknown word

end;

Fig. 5. Pseudo-code of function Word to Index

procedure Minimize Automaton (Automaton) =
begin

Calculate Π ;

for i← 0 to h(q0) do
begin

Sort the states ofΠi by their transitions;
Collapse all equivalent states

end
end;

Fig. 6. Pseudo-code of procedure Minimize Automaton

148 Jorge Graña et al.

function Incremental Construction (Lexicon) =
begin

Register← ∅;

while (there is another word in Lexicon) do
begin
Word← next word of Lexicon in lexicographic order;
Common Prefix← Common Prefix (Word);
Last State← q0.Common Prefix;
Current Suffix←Word[(Length (Common Prefix) + 1) . . . Length (Word)];
if (Has Children (Last State)) then
Register← Replace or Register (Last State,Register);
Add Suffix (Last State, Current Suffix);

end;

Register← Replace or Register (q0, Register);
return Register

end;

Fig. 7. Pseudo-code of function Incremental Construction

function Replace or Register (State,Register) =
begin

Child← Last Child (State);
if (Has Children (Child)) then

Register← Replace or Register (Child,Register);

if (∃ q ∈ Q : q ∈ Register ∧ q ≡ Child) then

begin
Last Child (State)← q;
Delete (Child)

end
else

Register← Register ∪ {Child};
return Register

end;

Fig. 8. Pseudo-code of function Replace or Register

	Compilation Methods of Minimal Acyclic Finite-State Automata for Large Dictionaries
	Introduction
	Compact Modeling of a Dictionary
	Numbered Minimal Acyclic Finite-State Automata
	Minimization Based on the Height Property
	Algorithms for Incremental Construction
	Improving the Access to the Register
	Conclusion
	Pseudo-Code of the Main Algorithms
	Pseudo-Code of the Main Algorithms

