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Abstract

The construction of minimal acyclic deterministic partial �nite

automata to represent large natural language vocabularies is de-

scribed. Applications of such automata include: spelling checkers
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1 Introduction

The use of �nite automata (see for instance [5]) to represent sets of words

is a well established technique. Perhaps the most traditional application

is found in compiler construction where such automata can be used to

model and implement e�cient lexical analyzers (see [1]). Applications of

�nite automata to solve some speci�c problems in natural language pro-

cessing are exempli�ed by the works described in [4] and in [7]. However,

the idea of compressing a very large vocabulary

1

of words into a minimal

acyclic deterministic �nite automaton, and its many applications seems

to be new. (In 1988, when this idea was being tested, we were not aware

of the work described in [2] and published soon after. The existence of

a non-disclosure agreement delayed the preparation of this paper even

further.)

The initial motivation for this research was the problem of imple-

menting an e�cient spelling checker for the Portuguese language.
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It

turned out however that besides providing a very satisfactory solution

for this speci�c problem, the technique is applicable to most languages,

including English, and to many other problems which use large vocab-

ularies. For instance, the spelling checker we mentioned can process

about 30,000 words per minute on a standard ibm

3

{compatible personal

computer, with the automaton for over 200,000 words �tting into about

124 kbytes of memory; on an 80386 model the speed goes up to 300,000

words per minute.

In the following sections we discuss in more detail the reasons for im-

plementing spelling checkers based on automata, describe the algorithms

and data structures used, provide some interesting statistics and show

some other possible applications: multilanguage dictionaries, thesauri,

1

Within this text we use the word vocabulary to mean a set of words over some

�nite alphabet.

2

Portuguese is a member of the family of Romance languages together with French,

Spanish, Italian and others. It is particularly close to Spanish and it is the o�cial lan-

guage of Brazil, with about 200 million speakers throughout the world. All examples

in this paper follow Brazilian usage.

3

ibm is the trademark of International Business Machines Corp.
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minimal perfect hashing and text compression.

2 Implementation of spelling checkers

In early 1988 we were approached by a Brazilian software house which

was engaged in the development of a spelling checker and adviser for

the Portuguese language. The company had collected a fairly complete

machine-readable vocabulary of about 206,000 words, but had serious

problems in �nding a suitable compact representation, so that a fast

spelling checker and adviser with its data structures could be �t into the

standard 640 kbytes memory of an ibm{compatible personal computer

as a memory resident program.

One of the most widely used spelling checkers is the unix

4

program

spell (see [3, 8]). The program starts by stripping from the given word its

a�xes (pre�xes and su�xes); for instance, re-work-ed produces work

and over-tak-ing produces take. The resulting word is then hashed

producing an index into a very large bit table which provides the answer

whether the word belongs or not to the vocabulary. By using the a�x

stripping, the initial vocabulary of about 250,000 words was reduced to

about 30,000. The size of the hashing table is computed in such a way

that the probability of a non-existing word colliding with an existing one

(i.e., a wrong answer) is about 1/4,000 which is perfectly acceptable in

practice. Instead of representing the whole table which is obviously very

sparse (out of about 134 million bits, only about 30,000 are ones), dif-

ferences between consecutive indices of non-zero entries are compressed

by using the in�nite Hu�man codes in order to take care of the variable

length integers. Search speed is achieved by partitioning the table into

512 segments, with each segment processed sequentially. The �nal re-

sult is a very compact representation of the original vocabulary within

52 kbytes of storage.

An analysis of the method used by unix spell shows some of its

drawbacks. In the �rst place, a�x stripping can lead to acceptance of

4

unix is a trademark of at&t Bell Laboratories.
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compara comparada comparadas comparado

comparados comparai comparais comparam

comparamos comparando comparar comparara

comparar�a compararam compar�aramos comparar~ao

compararas comparar�as comparardes compararei

comparareis compar�areis compararem compararemos

comparares compararia comparariam comparar��amos

compararias comparar��eis comparas comparasse

compar�asseis comparassem compar�assemos comparasses

comparaste comparastes comparava comparavam

compar�avamos comparavas compar�aveis compare

comparei compareis comparem comparemos

compares comparo comparou

Figure 1: All 51 distinct forms of the Portuguese verb comparar (to

compare).

non-existing words. Most of the practical cases are eliminated by a stop

list: foreswear will not be accepted instead of forswear, even though

fore is a valid pre�x. However, non-words like soughted, printered

or electrowordlesslikement will be accepted! It can be argued of

course that such nonsense words will hardly ever occur in a real life text.

On the other hand, the speller does accept some non-words which might

appear as spelling or typographical mistakes: womans instead of woman's,

tos instead of toes (or maybe toss), and toing instead of toeing (or

towing). It should be noted also that this technique produces in fact an

in�nite vocabulary by allowing almost arbitrary combinations of a�xes.

The problem becomes more serious in a highly in
ected Romance

language. A regular verb in Portuguese has 78 forms, of which 51 are dis-

tinct (see Figure 1). Actually there are four groups of regular verbs (i.e.

conjugations) derived from in�nitive forms ending in -ar (like comparar

| to compare), -er (comer | to eat), -ir (partir | to leave) and -or
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compare

compares

compared

comparing

Figure 2: All four distinct forms of the English verb to compare

.

bonita conselheira

bonitas conselheiras

bonito conselheiro

bonitos conselheiros

Figure 3: All four distinct forms of the Portuguese adjective bonito

(pretty) and the noun conselheiro (counselor).

(compor | to compose). They all have their own forms, but they also

share many common su�xes. This should be contrasted with English

where a regular verb has only four distinct forms (see Figure 2). A regu-

lar adjective in Portuguese has four distinct forms which contrasts with

a unique form in English. Nouns can have the same endings as adjec-

tives when both masculine and feminine forms exist (see Figure 3). As

a result, verbs, nouns, adjectives and many other words share the same

su�xes. Many of these su�xes are endings of other su�xes as well. All

this makes it di�cult to apply the su�x stripping technique without an

elaborate case analysis scheme.

In view of these problems, we decided to try a di�erent approach

by building a minimal acyclic deterministic partial �nite automaton ac-

cepting exactly the about 206,000 words in the available vocabulary, as

described in the following section. In this way we could avoid the prob-

lems of introducing non-existing words. Besides that, such automata
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Figure 4: The minimal acyclic �nite automaton for all forms of the verbs

rework, replay, overwork and overplay.

provide a simple and general way of implicitly stripping pre�xes and

su�xes since each of these will be represented only once. In Figure 4

we show such an automaton for all forms of the English verbs rework,

replay, overwork and overplay. Notice that in order to include all

forms of the verb work it su�ces to add just one transition labeled by

the letter w from state 0 to state 9.

An important aspect of this representation is that a word will be

found only if it exists explicitly in the vocabulary used to build the

automaton. This should be contrasted with the unix spelling checker in

which it would su�ce to insert the verbs work and play in order to get

all those forms and many others, such as ultrawork and pseudoplay.

On the other hand, as is shown in Section 5, the property of being

able to enumerate all words in the vocabulary from its automaton can

be very useful in other applications.

3 Implementation of the automaton

The construction of the automaton proceeds according to the basic al-

gorithm:
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function BuildAutomaton(Vocabulary);

begin

A  EmptyAutomaton;

repeat

while A not full do

include the next word of Vocabulary in A;

A  minimal(A)

until no more words in Vocabulary;

return A

end

After the �rst execution of the while loop the automaton A is re-

ally a digital tree. Figure 5 shows such a tree after the inclusion of all

the words used in Figure 4. This tree can grow quite large: if the com-

plete Portuguese vocabulary of 206,000 words were included at once, the

tree would have over 600,000 vertices which would be unmanageable on

a standard ibm{compatible personal computer running under the ms{

dos

5

system. Therefore the outermost repeat loop of the algorithm is

necessary. The minimization step takes advantage of the fact that the

automaton is acyclic and uses an algorithm which is linear in the size of

the automaton. As a matter of fact, this linear algorithm seems to have

been discovered independently by others (see for instance [10]).

We use a rather elaborate data structure in order to achieve a very

compact memory representation, without sacri�cing the access speed,

which depends only on the length of the word being searched and not

on the size of the automaton or its alphabet. Each state is represented

as an array with N entries (N is the size of the alphabet) | most of

these entries correspond to non-existing transitions. We take advantage

of this fact by shifting and overlapping state arrays in such a way that

the existing entries do not collide. This technique is similar to the imple-

mentation of tries suggested in [6]. To each state we attach one N -bit

vector which selects the existing transitions for the state. Array packing

is done by a greedy algorithm which in this case gives almost always

5

ms{dos is a trademark of MicroSoft Corp.
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Figure 5: The digital tree for all forms of the verbs rework, replay,

overwork and overplay.
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optimal results due to a very large percentage of states with one, two

or three transitions (see Section 4 for some statistics). It also turns out

that the number of distinct bit vectors is much lower than the number

of states, so that many of them are shared.

The search algorithm for a given word is of course very e�cient.

Starting from the initial state, it traverses through the automaton by

using the consecutive letters of the word to select the transitions, until

either a �nal state is reached or no transition exists (i.e., either the word

belongs to the vocabulary or not).

Our �nal results show that from a practical point of view a simpler

data structure could be used, without much increase in storage or ac-

cess time. For instance, an English vocabulary of about 81,000 words

produced an automaton with about 30,000 states and 68,000 transitions.

Each state could be represented by a sequence of existing transition pairs:

a letter (one byte) and a state index (two bytes); an extra byte for each

state would hold the number of existing transitions. Consequently the

whole automaton would use about 229 kbytes: a 13% increase over our

representation requiring about 203 kbytes. For the Portuguese vocabu-

lary the increase would be of about 22%. The search algorithm for this

simpler representation would require a linear pass through the transition

sequence for each state, but as we mentioned already most of the states

have very few transitions.

Our original representation was chosen mainly because we did not

know beforehand either the size of the resulting automaton or its prop-

erties, and we tried to minimize the storage requirements. As a matter

of fact, besides the packing of the state arrays, we introduced some addi-

tional facilities such as short (relative) and long (absolute) state indices,

and so on. These may prove useful if we attempt to process much larger

vocabularies.

We also included the possibility of representing automata with mul-

tiple initial states, each one of them producing a di�erent vocabulary,

but minimized together, so that except for the �rst letters, the common

su�xes among words are still properly shared. Strictly speaking such

automata are non-deterministic. This is a very restricted form of non-
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determinism which can be handled by the searching algorithm through

a simple loop without requiring any backtracking. This facility is useful

in some applications to be seen in Section 5.

4 Some statistics and measurements

As we mentioned already, our main tests were applied to two cases: an

English vocabulary from a popular speller checker with about 81,000

words and a Portuguese vocabulary with about 206,000 words. It should

be stressed that the information contents of these two vocabularies are

very di�erent. Due to the very high number of derived forms, the Por-

tuguese vocabulary contains a much lower number of \basic" forms than

the English one. This fact explains why the English automaton is sub-

stantially larger. Figure 6 shows some of the statistics for these vocab-

ularies and automata (the vocabularies are common ASCII �les, with

one word per line, followed by the carriage return and line feed charac-

ters). We include in this �gure the results of compressing the original

vocabularies and the automata �les with the popular pkzip and pkpak

6

utility programs. It should be noticed that the compression rates of the

automata �les are relatively low, in contrast with the compression of the

original vocabulary �les. This fact was to be expected, since the au-

tomata represent already a compacted form of the vocabulary �les (see

also Subsection 5.5).

In Figure 7 we show the distribution of the states of the automata

according to the number of their transitions per state. In both cases

we used the same 26 letter alphabet augmented by the characters �c (c-

cedilla needed in Portuguese), - (hyphen) and # (word terminator); see

the next section for the explanation how Portuguese accented letters are

treated. We can see that in both cases about 80% of the states have at

most three valid transitions which explains optimal results of our array

packing.

Figure 8 shows how these automata grow with the number of words

6

pkzip and pkpak are trademarks of pkware, inc.
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English Portuguese

Words 81,142 206,786

kbytes 858 2,389

Vocabulary pkpak 313 683

pkzip 253 602

States 29,317 17,267

Transitions 67,709 45,838

Automaton kbytes 203 124

pkpak 173 105

pkzip 183 109

Figure 6: Statistics for the vocabularies and the automata.

included. The words in each vocabulary are distributed �rst randomly

and then alphabetically into ten approximately equal size vocabularies,

and then cumulatively added to form the automata. Figure 9 displays

the same data graphically.

It is interesting to note that whereas the growth of the automaton

is close to linear when the words are included in alphabetical order, a

very di�erent behavior is observed with random order inclusion: actu-

ally the automaton can decrease in size when more words are included!

This behavior is not surprising. With the inclusion in alphabetical order,

previously non-existing pre�xes and many new word roots keep being in-

cluded increasing the size of the automaton. When the inclusion follows

a random order, most pre�xes and roots (and su�xes as well) end up

being included in earlier stages. Many of the new words included are

simple additions of some derived forms of other words already in the au-

tomaton. Such inclusions can make the automaton shrink. For instance,

if the word overplayed were excluded from the automaton in Figure 4,

the resulting automaton would actually grow from 17 states and 22 tran-

sitions to 18 states and 25 transitions. As an extreme case, we should

remember that, given the 26 letter standard alphabet, a vocabulary of

11



Transitions English Portuguese

per state States % States %

0 1 0.0 1 0.0

1 14471 49.4 7191 41.6

2 6398 21.8 3639 21.1

3 3369 11.5 2562 14.8

4 1822 6.2 1502 8.7

5 1307 4.5 681 3.9

6 728 2.5 398 2.3

7 375 1.3 315 1.8

8 224 0.8 338 2.0

9 155 0.5 273 1.6

10 114 0.4 153 0.9

11 68 0.2 69 0.4

12 61 0.2 27 0.2

13 48 0.2 22 0.1

14 43 0.1 24 0.1

15 25 0.1 11 0.1

16 17 0.1 17 0.1

17 13 0.0 10 0.1

18 10 0.0 10 0.1

19 16 0.1 10 0.1

20 15 0.1 2 0.0

21 14 0.0 7 0.0

22 9 0.0 2 0.0

23 4 0.0 1 0.0

24 4 0.0 1 0.0

25 2 0.0 0 0.0

26 4 0.0 1 0.0

Figure 7: Distribution of states according to the number of their transi-

tions.
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English

% Random Alphabetical

States Transitions kbytes States Transitions kbytes

10 10,459 17,935 52 4,178 8,540 25

20 16,478 29,904 86 7,109 15,474 44

30 21,201 40,017 114 9,869 21,560 61

40 24,891 48,511 137 12,538 28,219 79

50 27,651 55,434 160 15,351 34,633 97

60 29,781 61,130 179 18,953 42,402 118

70 31,106 65,491 195 21,576 48,608 135

80 31,746 68,626 206 23,705 54,216 153

90 31,418 69,809 210 25,973 60,137 175

100 29,317 67,709 203 29,317 67,709 203

Portuguese

% Random Alphabetical

States Transitions kbytes States Transitions kbytes

10 17,817 34,751 97 2,126 5,090 15

20 22,713 52,627 153 4,375 11,165 32

30 25,766 65,729 206 5,677 14,602 41

40 27,720 75,370 244 6,853 17,762 49

50 29,007 82,609 275 8,414 22,033 61

60 29,836 88,130 297 10,726 27,465 76

70 30,101 92,081 314 12,845 33,170 90

80 29,333 92,047 312 14,426 37,513 102

90 26,896 84,611 280 15,665 41,166 112

100 17,267 45,838 124 17,267 45,838 124

Figure 8: Growth of the automata.
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Figure 9: Graph of the growth of the automata.
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Figure 10: Automaton accepting all words of up to four letters.

all letter sequences of length up toM would have (26

M+1

�1)=25 words;

for instance, for M = 4 we would have 475,255 words. On the other

hand, the automaton for such a vocabulary would have only 27M + 1

transitions (109 for M = 4; see Figure 10).

We also measured the speed with which our automaton can be used.

For both languages the results are practically the same, even though

the average English word is shorter than the Portuguese one. Our tests

were programmed in C and carried out on a standard ibm{compatible

personal computer with a 4.77 MHz clock. A simple spelling checker

reading a normal text from a hard disk �le could process about 30,000

words per minute; on an 80386 model we achieved the speed of 300,000

words per minute.

We would like to mention also that we built the automaton for the

unix system dictionary /usr/dict/words containing about 25,000 com-

monly used English words (202 kbytes).

7

The automaton has 16,445

states, 38,288 transitions and uses 112 kbytes of memory.

7

In order to keep a 29 letter alphabet, we used the standard 26 letters plus -

(hyphen), ' (quote) and # (word terminator), translated upper case letters into lower

case, and eliminated the few words which include digits.
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5 Applications

5.1 Spelling checkers and advisers

As we mentioned already, our �rst motivation was the implementation of

a spelling checker and adviser for Portuguese.

8

It should be obvious that

the minimal acyclic �nite automata we described provide a very conve-

nient basis for the spelling checking part for any language for which such

an automaton can be built. An additional problem we had to face is the

existence in Portuguese of 12 letters with diacritical marks: �a, �a, �e, ��, �o,

�u, â, ê, ô, ~a, ~o and �u. One simple solution would be to increase by 12 the

size of the alphabet. We chose however to strip the letters of their marks,

and encode them and their positions after the word terminator. This so-

lution contributes to decrease the size of the automaton, since words like

compar�aramos and compararam or �org~ao and orgânico produce longer

common pre�xes: compararam- and orga-. Very few words have more

than one diacritical mark,

9

so that the distinct su�xes created by the

encoding are relatively few.

With regard to the spelling adviser, we relied heavily on the fact that

Portuguese uses a fairly phonetic spelling system. Besides that, one of

our design decisions was that the program should detect all mistakes (rel-

ative to its vocabulary), but would have to give good advice mainly for

spelling and not for typing mistakes; the latter ones are easily corrected

by the users after they are pointed out.

One of the most common sources of spelling mistakes in Portuguese is

the wrong usage of diacritical marks: for instance, necessario instead of

necess�ario (necessary) or fôlha instead of folha (sheet). Sometimes

the adviser will present several alternatives. The three forms sabia

(knew), s�abia (wise woman) and sabi�a (a native Brazilian bird) are

correct; however sab��a and sâbia do not exist. The encoding of diacrit-

ical marks as su�xes makes it particularly easy to �nd all the existing

8

A commercial spelling checker and adviser based on the ideas described in this

section was implemented by tti Tecnologia Ltda., S~ao Paulo, SP, Brazil.

9

The word q�uinq�uel��ng�ue (
uent in �ve languages) seems to be an absolute cham-

pion with its four marks!
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forms of a word which agree except for those marks.

Another source of common spelling mistakes are letter combinations

which denote similar sounds: extender instead of estender (to extend),

pesquiza instead of pesquisa (research), essess~ao instead of exce�c~ao

(exception), humido instead of �umido (humid). We take care of this prob-

lem by using some phonetic rules. The word whose spelling alternatives

we want to �nd is transformed (by another very simple automaton), after

being stripped of its diacritical marks, into a convenient representation:

extender would become eS

1

tender, essess~ao would become eS

2

eS

3

ao,

where the symbols S

1

, S

2

and S

3

denote the usual sound of the letter

s for di�erent letter contexts. Possible substitutions for the symbol S

1

are: fs,xg, for the symbol S

2

: fss,sc,xc,c,ccg, and for the symbol S

3

:

fss,�c,c�cg. Next, a backtracking algorithm is used to enumerate all the

possibilities and check them against the automaton. In the case of the

word essess~ao we would have apparently 15 alternatives like esce�cao

and excessao. Since the substitutions are generated from left to right,

and tested incrementally against the automaton, few alternatives are ac-

tually generated, since words starting with esce or eces do not exist. As

a �nal result we get a list of alternatives, in which we include diacritical

marks whenever they apply. Most of the time the list is very short and

accurate. It should be noted that if the adviser were based on a hashing

scheme, incremental testing of the alternatives would not be possible.

We believe that the technique we use for spelling advising could be

easily adapted to many languages which use phonetical spelling sys-

tems; Spanish and Italian are good candidates. For other languages

this approach might be less applicable; we certainly would not advise it

for English. It should be noticed, however, that the speed with which

the automaton can be traversed would probably make feasible other ap-

proaches, such as extensive testing of letter substitutions, transpositions,

omissions and insertions.
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Figure 11: The numbered version of the automaton

5.2 Minimal perfect hashing

Let us assume that the representation of our automaton includes, for

each state, an integer which gives the number of words that would be

accepted by the automaton starting from that state. We shall refer to

such an automaton as a numbered automaton. In Figure 11 we show the

numbered version of the same automaton of Figure 4. The numbering

can be done by a fairly simple traversal through the automaton, once it

was built. The storage requirements for this addition are fairly modest:

one integer per state (30 to 35% of storage increase in our examples).

Given such a numbered automaton, we can write two simple functions

which implement a one-to-one correspondence between the integers 1 to

L (L is the number of words accepted by the automaton) and the words

themselves, as shown in Figures 12 and 13.

10

These functions represent an e�cient and compact minimal perfect

hashing scheme for the vocabulary which can be used in several appli-

cations (some will be mentioned in this section). It should be stressed

that this scheme can be used only if the hashing functions do not change

very often since the construction of the automaton can be quite time

consuming. This should be contrasted with the results described for in-

stance in [9], where a fast method to determine a minimal perfect hashing

10

The ordering implied by this numbering is the lexicographic ordering of the orig-

inal vocabulary.
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function WordToIndex(Word);

begin

Index  0;

CurrentState  InitialState;

for I  1 to Length(Word) do

if ValidTransition(CurrentState,Word[I]) then

begin

for C  FirstLetter to Predecessor(Word[I]) do

if ValidTransition(CurrentState,C)

then Index  Index + CurrentState[C].Number;

CurrentState  CurrentState[Word[I]];

if IsFinal(CurrentState)

then Index  Index + 1

end

else return Unde�ned;

if IsFinal(CurrentState)

then return Index

else return Unde�ned

end

Figure 12: Hashing function

function is described. The computation of the resulting hashing requires

however that the whole vocabulary be kept as part of the data structure,

which is usually much larger than the automaton used in our method.

5.3 Multilanguage dictionaries

Numbered automata can be used to implement multilanguage dictionar-

ies for simple word-to-word translations. Vocabularies for several lan-

guages can be represented by one automaton with multiple initial states,

one for each language. It is interesting to note that even though di�er-
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function IndexToWord(Index);

begin

CurrentState  InitialState;

Count  Index;

OutputWord  EmptyWord;

repeat

for C  FirstLetter to LastLetter do

if ValidTransition(CurrentState,C) then

begin

AuxState  CurrentState[C];

if AuxState.Number < Count

then Count  Count � AuxState.Number

else

begin

OutputWord  OutputWord & C;

CurrentState  AuxState;

if IsFinal(CurrentState)

then Count  Count � 1;

exit forloop

end

end

until Count = 0;

return OutputWord

end

Figure 13: Unhashing function
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ent languages are involved, by reversing the words while we build the

automaton, the minimization process takes advantage of any existing

spelling similarities like for instance common Latin pre�xes and roots

existing in many European languages. Besides the automaton, for each

language we can use an array indexed by the word numbers and map

them into lists of indices for other languages. The lists can be part of

the arrays themselves as shown in the hypothetical example in Figure 14

for an English{French{Portuguese dictionary.

5.4 Thesauri

Given a word like work, a simple thesaurus might produce an output

like:

work:

noun avocation,calling,employment,field,job,occupation,

profession,trade,vocation;

chore,drudgery,grind,labor,slavery,sweat,tedium,toil,

travail.

verb answer,do,fulfill,meet,qualify,satisfy,suffice.

Thus for each grammatical category to which the word belongs (noun,

verb, etc.) we have a set of lists of related words, with each list corre-

sponding to a di�erent interpretation of the word. Such a thesaurus is

usually complete (or closed) in the sense that if we give it any of the

words on one of these lists, we get as one of the results the same list (the

word given as the key is usually excluded). Thus if we give the thesaurus

the word toil we might get:

toil:

noun chore,drudgery,grind,labor,slavery,sweat,tedium,

travail,work.

verb lumber,persevere,persist,plod,plug.

We implemented this kind of thesaurus by using a numbered automa-

ton with multiple initial states: each initial state corresponds to one
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English French Portuguese

cat

chat

gato

Figure 14: Example of the auxiliary arrays for multilanguage dictionary

and the word cat (chat in French and gato in Portuguese).

22



grammatical category. Besides the automaton, we use some additional

data structures to represent the lists of words as sequences of numbers.

This implementation was tested for an English thesaurus which is part of

a popular commercial product. Its automaton accepts about 9,500 words

(a word like work is counted twice, since it is a noun and a verb), has less

than 9,000 states and 18,000 transitions. The storage requirements are

88 kbytes for the automaton and about 39 kbytes for the additional data

structures. The original commercial implementation required about 159

kbytes.

This kind of application is of course very general and does not depend

on the language.

5.5 Text compression

A sequence of words belonging to the vocabulary of an automaton can

be obviously encoded by the sequence of its numbers which will usually

require less space. In practice the problem of text compression is more

complicated due to the appearance of words not belonging to the vo-

cabulary, treatment of lower and upper cases and inclusion of non-letter

characters. It is possible however to combine the above idea with other

compression techniques (see [12]). Our preliminary results show that

the performance is sometimes reasonably close to that of the utility pro-

grams pkzip and pkpak, but not any better. It seems that in this case

only applications in some special contexts might prove to be of interest.

For instance, if we wish to compress a set of words, regardless of their

order, we can use the automaton itself. The size of the automaton can

be much smaller than the result of a compression program as shown in

Figure 6. It also shows that some additional savings can be achieved by

compressing the automaton �le itself.

6 Future work

We have shown that �nite automata provide a useful tool for many appli-

cations where a very compact representation of large vocabularies with
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direct access is required. One of the directions we would like to follow

in the future is to do some experiments on languages other than English

and Portuguese, especially on those with di�erent spelling systems like

for instance Arabic and Hebrew, or even Japanese and Chinese where

a suitable representation for their characters would have to be used. It

seems however that machine-readable vocabularies for these languages

are not easy to �nd.

Another interesting direction is to try to build automata for even

larger vocabularies, in order to study the statistics they produce and

to try to understand what kind of information they provide about the

language, or at least about its spelling system.

Finally we would like to study other possible applications for these

ideas. One of them might involve vocabularies found in molecular biol-

ogy.
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