2. (32 marks) Consider the following edge-weighted directed graph:

![Graph Image]

a) (8 marks) Run Dijkstra’s algorithm (p, 595) on the directed graph above using vertex y as the source vertex. In the style of Figure 24.6 in the textbook, show the d and π values and the vertices in set S after each iteration of the while loop.

b) (8 marks) Run the Bellman-Ford algorithm (p, 588) on the directed graph above using vertex y as the source vertex. Relax edges in lexicographic order in each pass, and in the style of Figure 24.4 on the textbook, show the d and π values after each pass. Finally, give the boolean value returned by the algorithm.

c) (8 marks) Re-do part (a) with the weight of arc (x, u) reset to -5.

d) (8 marks) Re-do part (b) with the weight of arc (x, u) reset to -5.

3. (18 marks) Consider the following decision problems:

k-Weight Simple Path (kWSP)

Input: An undirected edge-weighted graph \(G = (V, E, w) \), an integer \(l, 0 < l \leq |V| \), such that for each edge \(e \in E \), \(1 \leq w(e) \leq l \), vertices \(x, y \in V \), and an integer \(k > 0 \).

Question: Is there a simple path between \(x \) and \(y \) in \(G \) whose summed edge-weight is \(\geq k \)?

Bounded-Weight Subset Cover (BWSSC)

Input: A set \(I = \{i_1, \ldots, i_n\} \) of items, a set \(R = \{r_1, \ldots, r_k\} \) of subsets of \(I \), an integer-valued subset-weight function \(w() \) such that for each \(r_x \in R \), \(w(r_x) > 0 \), a subset \(N \subseteq I \), and integers \(0 < k_1 \leq k_2 \).

Question: Is there a subset \(R' \subseteq R \) such that \(\cup_{r \in R'} r = N \) and \(k_1 \leq \sum_{r \in R'} w(r) \leq k_2 \)?
a) (9 marks) Prove that problem kWSP is NP-complete by (1) showing that this problem is in NP and (2) giving a polynomial-time many-one reduction (algorithm + proof of correctness) to this problem from an NP-hard problem.

b) (9 marks) Prove that problem BWSSC is NP-complete by (1) showing that this problem is in NP and (2) giving a polynomial-time many-one reduction (algorithm + proof of correctness) to this problem from an NP-hard problem.