
1

Computer Science 3600 (Winter 2024):
Assignment #3

Supplementary Question Answers

2. (15 marks) Determine the optimal parenthesization of a matrix-chain product whose
sequence of dimensions is ⟨2, 5, 3, 4, 2, 3, 5⟩ using the algorithm given on page 336 of
the textbook. In the style of Figure 15.3, show the filled-in dynamic programming matri-
ces m and s , the “backpointer path” in s that gives an optimal parenthesization, and the
parenthesization associated with that path.

Answer: The matrices m and s are shown in Figure 1. For the sake of completeness, the
computations for each of the cells in m and s are given below:

m[1][2] = min

{
m[1][1] +m[2][2] + (p[0] ∗ p[1] ∗ p[2]) (k = 1)
= 0 + 0 + 30 = 30

}
= 30 (k = 1)

m[2][3] = min

{
m[2][2] +m[3][3] + (p[1] ∗ p[2] ∗ p[3]) (k = 2)
= 0 + 0 + 60 = 60

}
= 60 (k = 2)

m[3][4] = min

{
m[3][3] +m[4][4] + (p[2] ∗ p[3] ∗ p[4]) (k = 3)
= 0 + 0 + 24 = 24

}
= 24 (k = 3)

m[4][5] = min

{
m[4][4] +m[5][5] + (p[3] ∗ p[4] ∗ p[5]) (k = 4)
= 0 + 0 + 24 = 24

}
= 24 (k = 4)

m[5][6] = min

{
m[5][5] +m[6][6] + (p[4] ∗ p[5] ∗ p[6]) (k = 5)
= 0 + 0 + 30 = 30

}
= 30 (k = 5)

m[1][3] = min

m[1][1] +m[2][3] + (p[0] ∗ p[1] ∗ p[3]) (k = 1)
= 0 + 60 + 40 = 100,
m[1][2] +m[3][3] + (p[0] ∗ p[2] ∗ p[3]) (k = 2)
= 30 + 0 + 24 = 54

 = 54 (k = 2)

m[2][4] = min

m[2][2] +m[3][4] + (p[1] ∗ p[2] ∗ p[4]) (k = 2)
= 0 + 24 + 30 = 54,
m[2][3] +m[4][4] + (p[1] ∗ p[3] ∗ p[4]) (k = 3)
= 60 + 0 + 40 = 100

 = 54 (k = 2)

2

m[3][5] = min

m[3][3] +m[4][5] + (p[2] ∗ p[3] ∗ p[5]) (k = 3)
= 0 + 24 + 36 = 60,
m[3][4] +m[5][5] + (p[2] ∗ p[4] ∗ p[5]) (k = 4)
= 24 + 0 + 18 = 42

 = 42 (k = 4)

m[4][6] = min

m[4][4] +m[5][6] + (p[3] ∗ p[4] ∗ p[6]) (k = 4)
= 0 + 30 + 40 = 70,
m[4][5] +m[6][6] + (p[3] ∗ p[5] ∗ p[6]) (k = 5)
= 24 + 0 + 60 = 84

 = 70 (k = 4)

m[1][4] = min

m[1][1] +m[2][4] + (p[0] ∗ p[1] ∗ p[4]) (k = 1)
= 0 + 54 + 20 = 74,
m[1][2] +m[3][4] + (p[0] ∗ p[2] ∗ p[4]) (k = 2)
= 30 + 24 + 12 = 66,
m[1][3] +m[4][4] + (p[0] ∗ p[3] ∗ p[4]) (k = 3)
= 54 + 0 + 16 = 70

= 66 (k = 2)

m[2][5] = min

m[2][2] +m[3][5] + (p[1] ∗ p[2] ∗ p[5]) (k = 2)
= 0 + 42 + 45 = 87,
m[2][3] +m[4][5] + (p[1] ∗ p[3] ∗ p[5]) (k = 3)
= 60 + 24 + 60 = 144,
m[2][4] +m[5][5] + (p[1] ∗ p[4] ∗ p[5]) (k = 4)
= 54 + 0 + 30 = 84

= 84 (k = 4)

m[3][6] = min

m[3][3] +m[4][6] + (p[2] ∗ p[3] ∗ p[6]) (k = 3)
= 0 + 70 + 60 = 130,
m[3][4] +m[5][6] + (p[2] ∗ p[4] ∗ p[6]) (k = 4)
= 24 + 30 + 30 = 84,
m[3][5] +m[6][6] + (p[2] ∗ p[5] ∗ p[6]) (k = 5)
= 42 + 0 + 45 = 87

= 84 (k = 4)

m[1][5] = min

m[1][1] +m[2][5] + (p[0] ∗ p[1] ∗ p[5]) (k = 1)
= 0 + 84 + 30 = 114,
m[1][2] +m[3][5] + (p[0] ∗ p[2] ∗ p[5]) (k = 2)
= 30 + 42 + 18 = 90,
m[1][3] +m[4][5] + (p[0] ∗ p[3] ∗ p[5]) (k = 3)
= 54 + 24 + 24 = 102,
m[1][4] +m[5][5] + (p[0] ∗ p[4] ∗ p[5]) (k = 4)
= 66 + 0 + 12 = 78

= 78 (k = 4)

3

m[2][6] = min

m[2][2] +m[3][6] + (p[1] ∗ p[2] ∗ p[6]) (k = 2)
= 0 + 84 + 75 = 159,
m[2][3] +m[4][6] + (p[1] ∗ p[3] ∗ p[6]) (k = 3)
= 60 + 70 + 100 = 230,
m[2][4] +m[5][6] + (p[1] ∗ p[4] ∗ p[6]) (k = 4)
= 54 + 30 + 50 = 134,
m[2][5] +m[6][6] + (p[1] ∗ p[5] ∗ p[6]) (k = 5)
= 84 + 0 + 75 = 159

= 134 (k = 4)

m[1][6] = min

m[1][1] +m[2][6] + (p[0] ∗ p[1] ∗ p[6]) (k = 1)
= 0 + 134 + 50 = 184,
m[1][2] +m[3][6] + (p[0] ∗ p[2] ∗ p[6]) (k = 2)
= 30 + 84 + 30 = 144,
m[1][3] +m[4][6] + (p[0] ∗ p[3] ∗ p[6]) (k = 3)
= 54 + 70 + 40 = 164,
m[1][4] +m[5][6] + (p[0] ∗ p[4] ∗ p[6]) (k = 4)
= 66 + 30 + 20 = 116,
m[1][5] +m[6][6] + (p[0] ∗ p[5] ∗ p[6]) (k = 5)
= 78 + 0 + 30 = 108

= 108 (k = 5)

The “backpointer path” (more properly, the backpointer tree) is indicated by dashed
arrows linking cells in the s matrix in Figure 1. This tree implies that the optimal
parenthesization of the given matrix chain is

(A1A2A3A4A5A6)
⇒ ((A1A2A3A4A5)(A6)))
⇒ (((A1A2A3A4)(A5))(A6)))
⇒ ((((A1A2)(A3A4))(A5))(A6)))

3. (20 marks) Consider the following edge-weighted directed graph:

x y

vu

s

5

3

3

1

−2

−1

2
−2

−5

3

4

1

2

3

4

5

6 1

2

3

4

5

6

ij

2

3

4

6

5

4

3

2

1

ij

m:

s:

0 0 0 0 0 0

5

1

2

2

2

2

3

4

4

4

5

54

134

30 60 24 24 30

54 70

66 84 84

78

108

4 4

4 4

5

42

Figure 1: Answer for Question #2.

5

a) (10 marks) Run Dijkstra’s algorithm (p, 595) on the directed graph above using vertex
y as the source vertex. In the style of Figure 24.6 in the textbook, show the d and π
values and the vertices in set S after each iteration of the while loop.

Answer: See Table 1.

b) (10 marks) Run the Bellman-Ford algorithm (p, 588) on the directed graph above using
vertex y as the source vertex. Relax edges in lexicographic order in each pass, and in the
style of Figure 24.4 on the textbook, show the d and π values after each pass. Finally,
give the boolean value returned by the algorithm.

Answer: See Table 2. As it is the case for all edges (a, b) that d(b) ≤ w(a, b) + d(a),
the algorithm returns true.

4. (20 marks) Consider the following decision problems:

Dumbbell subgraph (DS)
Input: An undirected graph G = (V,E) and two positive integers k, l ≥ 1.
Question: Are there two cliques C1 and C2 and a simple path P in G such that C1 and
C2 have ≥ k vertices apiece, P has ≥ l edges, P connects C1 and C2, the cliques and path
do not have any edges in common, and the only vertices that P shares with C1 (C2) is its
connection-vertex?

Bounded-Weight Subset Cover (BWSSC)
Input: A set I = {i1, . . . , ia} of items, a set R = {r1, . . . , rb} of subsets of I, an integer-valued
subset-weight function w() such that for each rx ∈ R, w(rx) > 0, a subset N ⊆ I, and integers
0 < k1 ≤ k2.
Question: Is there is a subset R′ ⊆ R such that ∪r∈R′r = N and k1 ≤

∑
r∈R′ w(r) ≤ k2?

a) (10 marks) Prove that problem DS is NP -complete by (1) showing that this problem
is in NP and (2) giving a polynomial-time many-one reduction (algorithm + proof of
correctness) to this problem from an NP -hard problem.

Answer: As any candidate solution has size s such that 2k(k−1)
2 ≤ s ≤ |V | and this

solution can be checked in time polynomial in the input size (ensure all vertices are
distinct and that the required edges exist between them), this problem is in NP .
To show NP -hardness, we reduce from the following NP -complete problem (p. 983,
textbook):

Hamiltonian Path (HP)
Input: An undirected graph G.

6

x y

vu

s
5

3

a)

x y

vu

s
5

3

x y

vu

s
5

3

x y

vu

s
5

3

x y

vu

s
5

3 x y

vu

s
5

3

c) d)

e) f)

b)−2 −2

−2 −2

−2−2

2 2

22

2 2

3 3

33

33

1 1

1 1

11

−1 −1

−1−1

−1 −1

3

3

3

3

3

3

−5−5

−5 −5

−5−5

−2

−2

−2 −2

−2

−2

0 0

00

0 0

1

−1

3

3 3

23

−1 −1

−1−1

1 1

1

4

4

4

−1

Table 1: Answer for Question #3(a). The shortest-path estimates are shown within the vertices;
empty vertices have estimates equal to infinity (∞). Bold edges indicate predecessor values. Bold
vertices are in the set S and regular vertices are in the priority queue Q = V −S. (a) The situation
before the first execution of the while loop on lines 4–8. (b)–(f) The situation after each successive
iteration of the while loop. Note that edges for which relaxation is attempted in each successive
iteration of the while loop are marked with circles.

7

x y

vu

s

5

3

a)

x y

vu

s

5

3

x y

vu

s

5

3

x y

vu

s

5

3

u

c) d)

b)−2 −2

−2 −2

x y

vu

s

5

3

e) −2

2 2

2 2

2

3 3

33

3

1 1

11

1

−1 −1

−1−1

−1

−2

−2

−2

−2

3

3

3

3

−5

−5

−5

−5

−5

−2

0

0 0

0

−2−1 −1

1

3

−1

3 4

−1

2 00 0

−3

−3

−2 −2

−2 −5

3

 −2 > −2 + −2

d(u) > w(u,x) + d(x)

Table 2: Answer for Question #3(b). The shortest-path estimates are shown within the vertices;
empty vertices have estimates equal to infinity (∞). Bold edges indicate predecessor values. (a)
The situation just before the first pass over the edges. (b)–(e) The situation after each successive
pass over the edges.

8

Question: Is there a simple path in G that links all vertices in G?

Given and instance (G) of HP, we construct an instance (G, k, l) of DS in which
k = 1 and l = |V | − 1. Any solution to this instance of DS contains a simple path
with at least |V | − 1 edges which must by definition include all vertices in G and
hence is a Hamiltonian path; conversely, any solution to the given instance of HP is
a simple path in G with |V | − 1 edges which connects two cliques of size k = 1, i.e.,
the endpoints of the path. As the construction described above can also be done in
polynomial time, this construction is a polynomial-time many-one reduction from
HP to DS which establishes the NP -hardness of DS. As DS is NP -hard and also in
NP , DS is NP -complete.

b) (10 marks) Prove that problem BWSSC is NP -complete by (1) showing that this prob-
lem is in NP and (2) giving a polynomial-time many-one reduction (algorithm + proof
of correctness) to this problem from an NP -hard problem.

Answer: As any candidate solution for an instance of BWSSC can be checked in time
polynomial in the input size (ensure that the selected subset of subsets covers N and
that the sum of the weights of these selected subsets is between k1 and k2 inclusive),
this problem is in NP . To show NP -hardness, we reduce from the following NP -
complete problem (p. 1033–1034, textbook):

Set Cover (SC)
Input: A set U = {u1, . . . , un} of items, a set S = {s1, . . . , sm} of subsets of U , and
an integer k ≤ m.
Question: Is there a subset S′ ⊆ S such that |S| ≤ k and ∪s∈S′s = U?

Given an instance ⟨U, S, k⟩ of SC, we construct an instance ⟨I,R,w,N, k1, k2⟩ of
BWSSC such that I = N = U , R = S, w(r) = 1 for all r ∈ R, k1 = 0, and k2 = k.
Observe that any solution to the constructed instance of BWSSC is also a solution
to the given instance of SC, and vice versa. As the construction described above
can be done in polynomial time, this construction is a polynomial-time many-one
reduction from SC to BWSSC which establishes the NP -hardness of BWSSC. As
BWSSC is NP -hard and also in NP , BWSSC is NP -complete.

