
1

Computer Science 3600 (Winter 2024):
Assignment #1

Supplementary Question Answers

2. (10 marks) For the algorithm below, derive a worst-case time complexity function T (n).

Answer: T (n) = 3n2 log2 n+ 9n2 + 9n+ 5 (see Figure 1)

3. (10 marks) For the algorithm below, derive an asymptotic worst-case, i.e., Big-Oh, com-
plexity function O(f(n)). Briefly explain the reasoning behind each derivation.

sum = 42

for i = 1 to n * log(n) do

j = 1

finished = false

for k = 1 to n do

if COND(sum)

sum = sum / (k * i) + j

while ((j <= n) and (not finished)) do

finished = true

Note that method COND() runs in (n+ 13) timesteps.

Answer: Note that the while-loop executes exactly once for each iteration of the innermost
for-loop as the variable finished is set to true during the first loop iteration and hence
causes the while-loop condition to evaluate to false on the second iteration. As method
COND() is evaluated each time the innermost for-loop executes and the outermost and
innermost for-loops execute n log2 n and n times, respectively, the algorithm runs in
O(n log2 n× n× (n+ 13)) = O(n3 log2 n) time.

2

i = 1 --

sum = 57 |

finished = false |

while ((i <= n) and (not finished)) -- |

for j = 1 to i do -- -- | |

if (COND(i)) -- | | | |

sum = sum + (i/j) | | | | |

for k = 1 to log(n) do -- | | | | |

sum = sum + k -- | | | | |

else | | | | | |

sum = sum - (j/i) | -- -- | | |

if COND(sum) then | | | -- | | |

finished = true | | | | | | |

i = 57 | | | | | | |

else | | | | | | |

i = i + 1 | | | -- -- -- |

sum = sum / i + 63 | | | | | | --

| | | | | | |

(log n)(1 + 2) + 2 | | | | | |

= 3 log n + 2 | | | | | |

| | | | | |

max(3 log n + 3, 1) + 4 | | | | |

= 3 log n + 7 | | | | |

| | | | |

n((3 log n + 7) + 2) + 2 | | | |

= 3n log n + 9n + 2 | | | |

| | | |

max(2, 1) + 4 | | |

= 6 | | |

| | |

(3n log n + 9n + 2) + 6 | |

= 3n log n + 9n + 8 | |

| |

n((3n log n + 9n + 8) + 1) + 1 |

= 3n^2 log n + 9n^2 + 9n + 1 |

|

(3n^2 log n + 9n^2 + 9n + 1) + 4

= 3n^2 log n + 9n^2 + 9n + 5

Figure 1: Worst-case Time Complexity Derivation, Question #2. Note that method COND() runs
in 4 timesteps.

3

4. (8 marks) For the algorithm below, derive a parameterized asymptotic worst-case time com-
plexity function.

sum = 0

tsum = -15

for i = 1 to n do

x = P1(n)

sum = sum - x + 5

for j = 1 to n * n do

y = x / (P2(n) + P1(n))

if (P3(n))

if (P4(n))

tsum = tsum + tsum

else

for j = 1 to log(n) do

if (P4(n))

y = y * i - j

tsum = tsum / y

sum = sum - tsum * tsum

Answer:
n(T (P1) + n2(T (P1) + T (P2)) + T (P3) + max(T (P4), log2 n) + T (P4))
= O(n3)T (P1) +O(n3)T (P2) +O(n)T (P3) +O(nmax(T (P4), log2 n))
= O(n3T (P1) + n3T (P2) + nT (P3) + (n×max(T (P4), log2 n)))

5. (12 marks) Prove or disprove the following:

a) (4 marks) f(n) = (n− 2)(n− 6) is not Θ(n2).

b) (4 marks) f(n) = nd + 10n2, where d is some integer constant greater than or equal to
2, is O(nd).

c) (4 marks) f(n) = 101272n is Ω(3n).

Answer: In each case below, we will work from the definitions for O(g(n)) and Ω(g(n)),
either to show that the inequalities in these definitions hold or that we can derive a
contradiction.

• Proof that f(n) = (n − 2)(n − 6) is Θ(n2): As (n − 6)(n − 2) = n2 − 8n + 12, this
can be rewritten as n2 − 8n+ 12 ≤ c1n

2 (the big-Oh part) and n2 − 8n+ 12 ≥ c2n
2

(the big-Omega part). The first inequality holds for c1 = 1 and n0,1 = 8 and the
second inequality holds for c2 =

1
8 and n0,2 = 8.

• Proof that f(n) = nd+10n2, where d is some integer constant greater than or equal
to 2, is O(nd): This can be rewritten as nd + 10n2 ≤ cnd. This inequality holds for
c = 11 and n0 = 1 when d ≥ 2.

4

• Proof that f(n) = 101272n is not Ω(3n): This can be rewritten as follows:

101272n ≥ c3n

log2(10
1272n) ≥ log2(c3

n)

log2 10
127 + log2 2

n ≥ log2 c+ log2 3
n

127 log2 10 + n ≥ log2 c+ n log2 3

127 log2 10 + (n− n log2 3) ≥ log2 c

As log2 3 > 1, the quantity n−n log2 3 is negative for positive values of n; moreover,
this quantity goes to negative infinity as n goes to infinity. Therefore, this inequality
is false for any c for sufficiently large values of n.

6. (10 marks) Determine the longest common subsequence (LCS) of the strings GAAGCCTA
and TATCGA using the algorithms given on pages 394 and 395 of the textbook. Show the
filled-in dynamic programming matrix, all matrix-cell backpointers, the backpointer path that
gives an optimal LCS, and the LCS associated with that path.

Answer: The requested table is given in Table 1. Note that the algorithm on page 395
has a rigid order for selecting backpointers (diagonal-up-across) that assigns only one
backpointer per cell, regardless of how many of the three associated previously-computed
cells yield an optimal cost. This algorithm, by preferring “up” backpointers to “across”
backpointers, effectively restricted the derivable LCS to the one that ended furthest to
the right in the the given sequence labeling the top of the table.

5

0

0 1 2 3 4 6 7 8

1

2

3

4

5

6

0 0 0 0 0 0 0 0

0

0

0

0

G C T A

0

0

1

0

G A

2

5

2

C

T

C

G

0

1

2

1

2

0

A

A

T

A

1

0 1 1

0 0 0 0

1 1 1 1

0 1 1 1 1 1 2

0 1 1 1 2 2 2 2

1 1 2 2 2 2 2

2 2 2 2 3

Table 1: Answer for Question #6 (textbook-specified backpointers).

