

Limits of Computation

Antonina Kolokolova

- What is computation?

- What is information?
- What is learning?

- Are there any limits of our ability to solve problems?

Theoretical Computer Science

- Is there a perfect antivirus?

- Can computers be creative?
- Why some problems are easier than others?

- Is it possible to have secure information and communication?

What is information?

- Does string 11111111111 contain more information than the string 10010110100?
- Do you learn more from a coin toss of a fair coin or a roll of dice?

What is information?

The less you can predict an outcome

The more you learn from it:
The more information you get.

The science of information

- In many languages the word for "Computer Science" is derived from the word for information
- French: Informatique
- Spanish: Informática
- German: Informatik
- Russian: Информатика

- The information comes in and we process it.
- So do computers. So do living cells, etc, etc.

On the other side of iron curtain

- In Soviet Union, in particular in Ukraine, PCs were not around till 1990 ${ }^{\text {th }}$
- First photo: "MIR" computer (from 1969). Developed in Kiev by Glushkov and his group.
- Were still in use in 1980s.
- Programmable calculators for personal use

What is computation?

- We process information by doing a "computation on it". Changing it from one representation to another.
- But what is computation?
- What does your smartphone compute when you are playing Pokemon Go?
- How does DNA "compute"?

- Is there a limit to what can be computed?

Limits of computation

- In 1900, at the International Congress of Mathematicians in Paris, David Hilbert posed a list of 23 problems. Problem 2 asked to prove that mathematics contains no selfcontradictions.
- In 1920, Hilbert extended it to what is now known as "Hilbert's
 program"

Hilbert's program

- Express all mathematics in a precise way
- Allowing a formal proof of all true statements
- With a proof, inside mathematics, that there is no self-contradiction
- And a procedure (an algorithm) for deciding, for any given mathematical statement, whether it is true or false.

Gödel Incompleteness Theorem

- If mathematics is not selfcontradictory...
- Then there are true statements that can't be proven!
- Such as "I am not provable"
- A paradox!

Church and Turing:

- Moreover,
- there is no procedure
- to decide if a given statement is true or false!
- And to decide many other things...

- But what do we mean by a "procedure"?

Models of computation

- Let me show you two models of computation.
- The first one is the Turing machine
- Our modern-day computers are based on this model

- The second is the Game of Life
- Looks nothing like a computer, and yet has the same power.

Turing machine

- A Turing machine has an (unlimited) memory, visualized as a tape
- Or a stack of paper
- And takes very simple instructions:
- Read a symbol
- Write a symbol
- Move one step left or right on the tape
- Change internal state.

Church-Turing thesis

Everything we can call "computable" is computable by a Turing machine.

"Will this ever stop?"

- A code for a Turing machine program is a string.
- Any string can be an input to a program.
- Imagine there is a machine that always does the opposite...
- From the machine which code is its input
- On a string encoding it
- What will it do on its own code?

- Yes?... No?... Yes?... No?... Paradox!
- So no such machine can exist... Some problems are unsolvable, with self-reference to blame.

Complexity of computation

- Would you still consider a problem really solvable if it takes very long time?
- Say 10^{n} steps on an n-symbol string?
- At a billion (10^{9}) steps per second ($\sim 1 \mathrm{GHz}$)?
- To process a string of length 100...
- will take $10^{100} / 10^{9}$ seconds, or $\sim 3 \times 10^{72}$ centuries.

- Age of the universe: about 1.38×10^{10} years.
- Atoms in the observable universe: $10^{78}-10^{82}$.

Complexity of computation

- What strings do we work with in real life?
- A DNA string has 3.2×10^{9} base pairs
- A secure key in crypto: 128-256 bits
- Number of Walmart transactions per day: 10^{6}.
- URLs searched by Google in 2012: 3×10^{12}.

Efficient computation

- What can be computed in our universe?
- We could only work with very short strings...
- But we want to work with our DNA string!
- We can try being efficient in solving problems.
- What does it mean to be efficient?
- And what kinds of problems can be solved efficiently?

A ตiolion=dollar question

The million dollar question

- In Russian, called "perebor" problem.
- "perebor" translates as "exhaustive search".
- Question: is it always possible to avoid looking through nearly all potential solutions to find an answer?
- Combinations of letters to guess your password?
- Combinations of numbers to solve an equation?

Are there situations when exhaustive search is unavoidable?

The million dollar question

- Suppose you have a basket of apples.
- Can you check that all apples are good without looking at (essentially) every single one?
- Is there a way that would work for every possible basket of apples?
- Smell test?

The million dollar question

- In English, most known as "P vs. NP" problem
- P stands for "polynomial time computable".
- NP is "polynomial time checkable"
- non-deterministic polynomial-time computable
- (fancy word for "guess and check")
-Question: is everything efficiently checkable also efficiently computable?
- In particular, is there a "smell test" for every problem that has easy-to-check solutions?

Colouring maps

- How many colours needed so that neighbouring countries do not get the same colour?
- For a picture like that - no more than 4.
- (A theorem famous for being proven with a help of a computer)

- Can it be done with 3 ?

Colouring maps

- Can it be done with 3 colours?
- How do we find out?
- Look at neighbours of Austria. There are 7 of them... 3 colours not enough.
- In general, nobody knows a good way!

Question

- Can this map be coloured with three colours?

Question

- Can this map be coloured with three colours?

Question

- Can this map be coloured with only 3 colours?

Question

- Can this map be coloured with only 3 colours?

Question

- Can this map be coloured with two colours?

Question

- Can this map be coloured with two colours?
- No...
- Western Australia, Northern territory and South Australia should all be different colours.

Question

- Can this map be coloured with only 2 colours?

Question

- Can this map be coloured with only 2 colours?

Colouring with 2 colours

- How do you check if a map is colourable with 2 colours?
- Start anywhere.
- Colour a region red
- Colour its neighbours blue
- Colour their neigbours red again...
- Continue until either done, or found a region would border one of the same colour

Colouring with 2 colours

- How do you check if a map is colourable with 2 colours?
- Start anywhere.
- Colour a region red
- Colour its neighbours blue
- Colour their neigbours red again...
- Continue until either done, or found a region would border one of the same colour

Colouring with 2 colours

- How do you check if a map is colourable with 2 colours?
- Start anywhere.
- Colour a region red
- Colour its neighbours blue
- Colour their neigbours red again...
- Continue until either done, or found a region would border one of the same colour

Colouring with 2 colours

- How do you check if a map is colourable with 2 colours?
- Start anywhere.
- Colour a region red
- Colour its neighbours blue
- Colour their neigbours red again...
- Continue until either done, or found a region would border one of the same colour

Colouring with 2 colours

- How do you check if a map is colourable with 2 colours?
- Start anywhere.
- Colour a region red
- Colour its neighbours blue
- Colour their neigbours red again...
- Continue until either done, or found a region would border one of the same colour

Colouring with 2 colours

- How do you check if a map is colourable with 2 colours?
- Start anywhere.
- Colour a region red
- Colour its neighbours blue
- Colour their neigbours red again...
- Continue until either done, or found a region would border one of the same colour

Colouring with 2 colours

- How do you check if a map is colourable with 2 colours?
- Start anywhere.
- Colour a region red
- Colour its neighbours blue
- Colour their neigbours red again...
- Continue until either done, or found a region would border one of the same colour

Colouring with 2 colours

- How do you check if a map is colourable with 2 colours?
- Start anywhere.
- Colour a region red
- Colour its neighbours blue
- Colour their neigbours red again...
- Continue until either done, or found a region would border one of the same colour

Colouring with 2 colours

- How do you check if a map is colourable with 2 colours?
- Start anywhere.
- Colour a region red
- Colour its neighbours blue
- Colour their neigbours red again...
- Continue until either done, or found a region would border one of the same colour

Colouring with 2 colours

- How do you check if a map is colourable with 2 colours?
- Start anywhere.
- Colour a region red
- Colour its neighbours blue
- Colour their neigbours red again...
- Continue until either done, or found a region would border one of the same colour

Colouring with 2 colours

- How do you check if a map is colourable with 2 colours?
- Start anywhere.
- Colour a region red
- Colour its neighbours blue
- Colour their neigbours red again...
- Continue until either done, or found a region would border one of the
 same colour

Colouring with 2 colours

- So checking if a map can be coloured with 2 colours is an easier problem than with three!
- And any map can be coloured with 4 colours.

Colouring maps

- If somebody gives you a coloured map, easy to check.
- Check that there are 3 colours overall
- Check that each country is different from its neighbours.
- Done!
- Finding a colouring
 seems much harder...

Polynomial-time computable

- Efficiently solvable:
- On an input string of length n

- Produce a solution roughly in time at most
- n, or n^{2}, or n^{3}, or... $n^{\text {const }}$.
- So a DNA string can be processed in about 3.2×10^{9} steps. At 1 GHz , it is 3.2 seconds.
- Concept dates back to 1960s, Jack Edmonds, and also Alan Cobham.
- Edmonds arguing why his "blossom algorithm" is better than what was known before.
- Checking that a given map is 3 -colourable is polynomial time computable.
- So is figuring out if a given map is 2 -colourable.

NP-completeness

- Is it possible to eliminate exaustive search?
- NP-completeness: enough to answer for the problem of map colouring!
- A map is like a basket of apples.

A map is colourable with 3 colours

$$
=
$$

There is a bad apple in the basket.

- Can "disguise" every problem that has efficiently checkable solutions as map colouring!

Stephen Cook

Leonid Levin

- The concept of NP-completeness was invented by Stephen Cook (and independently Leonid Levin) in 1971
- Made its way into popular culture, often as a synonym to "hard"... though we do not know for sure!

Maps vs. teams

- Colouring a map with 3 colours is the same problem as splitting into three teams - in disguise.
- Call them TeamRed, TeamGreen and TeamYellow.
- Require that neighbours cannot be on the same team.
- If can split into three teams, colour countries by their team's colour.
- So if can split into teams efficiently, can colour maps just as efficiently.
- So splitting into two teams seems easier than into three!

P vs. NP

- If somebody finds a way to solve 3colouring efficiently, then we will live in a very different world, where
- Creativity and problem-solving are automated.
- Not much security left on the internet.
- Every theorem has a short proof...
- So most scientists believe that solving 3 -coloring is impossible, but nobody so far can prove it.

If $\mathrm{P}=\mathrm{NP}$... creativity is automated

If $\mathrm{P}=\mathrm{NP} . .$. there is no security

Quantum computers

- Can quantum computers colour maps efficiently?
- We don't know... but don't think so.
- Although they can factor numbers, which we do not know how to do on a usual computer fast.
- A real scalable quantum computer would require changing much of security on the internet.
- RSA cryptosystem assumes factoring is hard.

Adiabatic Quantum Computer Component Array

Exhaustive search beyond P vs. NP

- Consider your friends on Facebook.
- Now look at the groups that they form
- Belonging to the same Facebook group
- Following the same person
- Etc...
- There can be many more groups than people.
- How hard is it to check if there are two groups that do not have any person in common?
- Easy! Just compare any two groups.
- Time to compare two groups times square of the number of groups.
- Wait, but that's exhaustive search!... Can we do faster?..
- If there are *lots* of groups, too slow in practice.
- If so, can eliminate exhaustive search from map colouring...
- Not quite solving P vs. NP, but getting there!

P vs. NP (David Johnson's cartoons)

"I cant solve it - I guess im just too dumb."

"I CANT SOLVE it - but nettiter can all these fanous people!"

"I cant solve it - because no solution exists!"

We may not be able to solve π. But we sure can get Close!

