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What is a Swarm?

A swarm is a group of mobile agents (e.g. animals or robots; real
or virtual) which exhibit the following properties:

1 There is no centralized control or synchronization between
agents

2 The agents sense and communicate locally

Lets take a look at some examples of swarms...



A swarm of honeybees looking for a new nest



Leafcutter ants retrieving building materials



Termite mounds taller than a Computer Scientist!



Chains of robots showing the path from point A to B



Spontaneous lane formation in human crowds



ANSWER: B and C



ANSWER: B and C



What is Swarm Intelligence?

Swarm intelligence (SI) refers to the ability of a swarm to solve a
problem collectively.

We assume that a single agent cannot solve this problem on
its own (at least not very well)

We won’t get bogged down on what it means to be
intelligent—if the swarm can be interpreted to be solving a
collective problem, then that is su�cient

Advantages of SI over other problem-solving methods:

Robustness to failure or malfunction of individual agents and
external disturbances

Flexibility to tackle many similar problems

Scalability to tackle large and small problems



We’ll now go through a tour of various 
different behaviours exhibited so far in 
swarm robotics...





How to organize
robots and objects



How to 
coordinate 
movement



How to agree



Spatially-Organizing 
Behaviours



Aggregation: 
“The goal of aggregation is to group all the robots of a 
swarm in a region of the environment”
Useful as a building block for other behaviours
Aggregation in nature: bacteria, fish, birds,...
We will look at the cockroach-inspired aggregation 
model proposed in:

S. Garnier, C. Jost, R . Jeanson, J. Gautrais, M. 
Asadpour, G. Caprari, and G. Theraulaz. Aggregation 
behaviour as a source of collective decision in a 
group of cockroach-like robots. In Advances in 
Artificial Life, volume 3630 of LNAI, pages 169–
178. Springer-Verlag, Berlin, Heidelberg, 2005.



Aggregation in 
Cockroaches

Aggregation behaviour in cockroaches can be 
modelled as follows:

Move randomly (correlated random walk)
Stop moving with probability that increases 
according to the number of stopped 
cockroaches nearby
Start moving with probability that decreases 
with the number of stopped cockroaches
Cockroaches may stop only in sheltered (i.e. 
darkened areas) 



Adding platforms to provide shelter from the light 
gives the cockroach-inspired robots a choice...

(Red dots added by AV to improve clarity)
The robots consistently choose one shelter over the 
other (they do not oscillate back and forth)



 Pattern Formation
“Pattern formation aims at deploying 
robots in a regular and repetitive 
manner.” 
Robots keep specific distances between 
each other
Inspired by biology and physics: 
distribution of molecules, growth of 
crystals



Robots moving in a hexagonal formation:

Another perspective is to move each 
robot to equalize the forces from virtual 
springs connected to the other robots
SHOW VIDEOS FROM SPEARS AND 
SPEARS



Chain Formation
Robots form a chain connecting two places in order to navigate 
or gather resources
We will consider work from the following paper:

S. Nouyan, A. Campo, and M. Dorigo. Path formation in a robot 
swarm: self- organized strategies to find your way home. 
Swarm Intelligence, 2(1):1–23, 2008.





Object Clustering
Inspired by observations of ant behaviours 
that create global order through local action

Dead ants moved into “cemetery clusters” 
that aggregate over time
Nest contents organized into distinct piles

Deneubourg et al’s model: 
Agents walk randomly and pick-up or 
deposit objects as a probabilistic function 
of local object density





Agents measure density by maintaining a short-term 
memory and counting the number of recent object 

appearances



My Work on Object 
Clustering



Modified SRV-1 robots (12.5 x 10.8 cm) 
with forward-facing fisheye cameras 
and passive grippers, suitable for 
carrying (and viewing) one puck

6 Andrew Vardy et al.

(a) (b)

Fig. 1 (a) Two of our modified SRV-1 robots in operation. Views from robot ‘116’ are pre-
sented in Figure 2(a). (b) The underside of the robot’s housing, showing the shape of the
passive gripper.

angle lens to maximize their field of view. Pixels in the image are classified by their
colour as obstacles (black), pucks (red, green, etc...), or other robots (blue). After
colour segmentation, a morphological erosion operation is applied to remove small
blobs which are likely to be noise (Gonzalez and Woods 2002). The calibration data
for this camera and its fixed geometry with respect to the ground-plane allow
us to relate image pixels with 2-D position on the ground-plane in the robot’s
reference frame (details are provided in section 3.3). This allows the formation of
an occupancy grid, where each cell is filled with an integer label that corresponds
to the classification of the source pixel Figure 2(a) shows the view from robot
‘116’ as depicted in Figure 1(a), the colour segmented image, and the mapping of
coloured pixels onto the occupancy grid.

Imposed on the occupancy grid is additional information. Pucks are identified
by applying connected components labelling (Gonzalez and Woods 2002) for each
possible puck colour. This process yields a set of blobs (interconnected pixels). The
centroid of each such blob is projected onto the occupancy grid and indicated by
circles in Figure 2 This process yields a list of puck locations. We then determine
connectivity between pucks by representing each perceived puck as a node in a
graph. If the distance between any pair of pucks is less than 1.5 times the puck
diameter then an edge is created between them. The connected components of
the resulting graph correspond to clusters and we can easily determine the size
and centroid of each cluster. Note that clusters are extracted independently for
each colour and therefore consist of only one colour by definition. We refer to the
occupancy grid, list of visible pucks of each colour, and list of clusters of each
colour as the local map.



The robot is not carrying a puck
It would consider selecting the solitary red 
puck as a pick-up target

If carrying a red puck, it would consider the 
cluster of two red pucks as a deposit target
Possible results of the pick-up/deposit attempt 
handled through the state machine...
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(a)

(b)

Fig. 2 This figure shows the view from one of our SRV-1 robots (a) and a simulated robot
(b). In (a) the robot’s raw view, colour segmented image, and local map are shown from
left-to-right. In (b) an overhead view of the simulator is shown, the simulated robot’s raw
view (no colour segmentation is required), and the local map.

Some additional processing is applied to the information stored in the local
map. Each robot can see within its own gripper and may also be able to see within
the grippers of other nearby robots. To prevent one robot from attempting to
collect a puck already held by another, we remove from the list of pucks any that
lie within a threshold distance in the image plane of another robot. The e↵ect of
this rule is visible in Figure 2(a) in that the red cells within the gripper of the
other robot are not extracted as a puck (they are not circled). It is also apparent
from this figure that the other robot is partially classified as a robot (blue), but
also partially classified as an obstacle (black). This is simply because parts of the
robot are di�cult to paint, such as the black rubber treads. Also, we take special
note of puck colours within the robot’s own gripper. If the fraction of puck colours
within the gripper is high enough then we assert that a puck is being carried. A
puck at the position of the gripper is added to the local map in this case. The
carried puck, just like other pucks, can belong to a cluster. If so, we know the
robot has made contact with this cluster. This is a significant event for the sorting
methods discussed below.

Clusters extracted from the local map are denoted as G(i)
j where i is the index

of the cluster and j is the object type. These clusters are graphs G(i)
j = (V (i)

j , E(i)
j )

where V (i)
j corresponds to the node set (i.e. the perceived pucks) and E(i)

j is the
set of edges between nodes. The algorithms described below act based on the the
number of pucks in a cluster. Therefore we define the size of a cluster as the

number of nodes: size(G(i)
j ) = |V (i)

j |. The smallest and largest clusters of type j





How to organize
robots and objects ✓

✓
✓

✓



Navigation 
Behaviours



Collective Exploration
Move to spread the swarm throughout the 
environment
The purpose might be to cover the largest area 
(left), or to serve as navigation beacons (right)



Coordinated Motion
Also known as “flocking”: Robots move together in self-
organized formations
Minimized collisions while staying together and moving 
coherently
Examples in biology:

Fish (schooling)
Birds (flocking)
Cattle (herding)

First flocking algorithm proposed in (Reynolds, 1987) 
for the purpose of animating virtual characters in 
movies
Three simple rules...





How to 
coordinate 
movement ✓

✓



Collective Decision-
Making



“Consensus achievement is a collective behavior 
used to allow a swarm of robots to reach 
consensus on one choice among different 
alternatives”
We have seen examples from biology:

Ants achieve consensus on the shortest path 
from a food source
Bees collectively decide which is the best food 
source

Consensus Achievement 



Example: Cache Consensus
The cache consensus model (Vardy et al, 
2014) involves a search for consensus as 
to where coloured pucks should be 
deposited:



Example: Aggregation
(Garnier et al, 2005) showed that simple robots could 
achieve consensus on the “shelter” they occupied:



How to agree
✓



Summary
A wide variety of collective behaviours have 
been explored in swarm robotics
Many behaviours are merely building blocks (e.g. 
aggregate, then make a decision)
The examples shown are just those considered so 
far
Increasing computational power and decreasing 
size opens up the option to explore larger and 
larger swarms...



The Kilobot Swarm

https://youtu.be/xK54Bu9HFRw


