Computer Science 1400: Part #8:

Where We Are: Artificial Intelligence

WHAT IS ARTIFICIAL INTELLIGENCE (AI)? AI IN SOCIETY RELATING WITH AI

What is Artificial Intelligence (AI)?

WALL-E (2008)

What is Artificial Intelligence (AI)? (Cont'd)

The Terminator (1984)

What is Artificial Intelligence (AI)? (Cont'd)

Artificial Intelligence (Merriam-Webster): 1. a branch of computer science dealing with the simulation of intelligent behavior by computers. 2. the capability of a machine to imitate intelligent human behavior.

- Two flavors of AI:
 - Strong AI: Design computer systems that demonstrate full human-level intelligence using "same" mechanisms.
 - Weak AI: Design computer systems that demonstrate human-like abilities using any mechanisms.

Artificial Intelligence: Beginnings

• First AI artifacts are mechanical automata which simulate various intelligent processes, *e.g.*, movement, reasoning.

Artificial Intelligence: The 1940s

Warren McCulloch and Walter Pitts Norbert Wiener (1898–1969 / 1923-1969) (1894–1964)

 Initial focus on natural models of neural (McCulloch-Pitts) and homeostatic (Wiener) processes.

Artificial Intelligence: The 1950s

John McCarthy (1927–2011)

Allen Newell and Herb Simon (1927–1992 / 1916-2001)

- Al born at Dartmouth Conference in 1956 (McCarthy).
- Focus shifts to abstract information-processing models (*e.g.*, General Problem Solver (GPS) (Newell-Simon)).

Artificial Intelligence: The 1960s

Joe Weizenbaum (1923–2008)

Marvin Minsky and Seymour Papert (1927–2016 / 1928–2016)

 Information-processing-based AI systems proliferate (*e.g.*, ELIZA (Weizenbaum)); first rule-based expert system created (*e.g.*, MYCIN); first-generation neural network research (Perceptrons) killed off by Minsky and Papert.

Artificial Intelligence: The 1960s (Cont'd)

PUMA (Programmable Universal Machine for Assembly) (1969)

Artificial Intelligence: The 1960s (Cont'd)

The LOGO Turtle (1969)

Artificial Intelligence: The 1960s (Cont'd)

Shakey (1969)

Artificial Intelligence: The 1970s

SHRDLU (1970)

Hubert Dreyfus (1929–2017)

• Retreat to "toy" micro-world systems (*e.g.*, SHRDLU); emergence of AI critics into popular culture (*What Computers Can't Do* (1972) (Dreyfus); *Computer Power and Human Reason* (1976) (Weizenbaum)).

Artificial Intelligence: The 1980s

Rodney Brooks (1954–) Genghis (1989)

- Second-generation neural network research begins; rise of reactive systems (*e.g.*, Genghis (Brooks)); massive governmental (Fifth Generation Project (MITI: Japan) / Strategic Computing Initiative (DARPA: USA)) and industrial start-up funding
- Over-selling leads to crash and late 1980s "AI Winter".

Artificial Intelligence: The 1990s

Gary Kasparov vs. IBM's Deep Blue (1997)

Artificial Intelligence: The State of the Art Overview

- Four general types of AI techniques:
 - 1. State-space search
 - 2. Expert systems
 - 3. Response frames
 - 4. Neural networks
- Original goal in 1956 was Strong AI, which is very hard; is now usually Weak AI in which brute-force processing or heuristics are used to get human-level speed if not accuracy.
- Notable successes in certain applications.

Artificial Intelligence: The State of the Art (Cont'd) Techniques: State-space Search

- View problem as space of interlinked states, e.g., configurations of puzzle or game.
- Solving the problem corresponds to finding a **solution path** through this space from the start state, i.e., what we know initially, to a **goal state**, i.e., what we want.

Artificial Intelligence: The State of the Art (Cont'd) Techniques: Expert Systems

- Perform logical inference and deductions in particular domains using **expert systems**.
- An expert system consists of (1) a **knowledge base** (assertions + IF-THEN rules) coded from human experts and (2) an **inference engine**.

Artificial Intelligence: The State of the Art (Cont'd) Techniques: Expert Systems (Cont'd)

Assertions: A1. Lincoln was president during the Civil War. A2. Kennedy was president before Nixon. A3. FDR was president before Kennedy.

+

Rules: R1. If X was president before Y then X precedes Y.

R2. If *X* was president before *Z* and *Z* precedes *Y* then *X* precedes *Y*.

∜

Inferences: I1. A2 AND R1 \Rightarrow Kennedy precedes Nixon. I2. A3 AND I1 AND R2 \Rightarrow FDR precedes Nixon.

Artificial Intelligence: The State of the Art (Cont'd) Techniques: Response Frames

 Response frames derive output by matching handcoded patterns on input and substituting matched entities into handcoded templates, e.g.,

"It's about X1 ."		"Tell me more about (X1,X2)."
"X2 drives me crazy."	\Rightarrow	"Why do you Y1 X3 ?"
"I Y1 X3 ."		"Why does X2 drive you crazy?"
"X4 hates me."		"You care about (X1,X2,X4)'s opinion."

• Key technology for implementing chatbots.

Artificial Intelligence: The State of the Art (Cont'd) Techniques: Neural Networks

- Based on abstract model of biological neurons.
- An **artificial neuron** produces an output 1 if the sum of its inputs times the weight on each input line exceeds a neuron-specific threshold value and 0 otherwise.
- Implement complex functions with an artificial neural networks (ANN) = input layer + one or more hidden layers + output layer + between-layer connections.
- Given **training set** of correct input-output pairs, can learn ANN connection weights by various algorithms, e.g., backpropagation.

Artificial Intelligence: The State of the Art (Cont'd) Techniques: Neural Networks (Cont'd)

Figure 15.6 Neural Network Model

Artificial Intelligence: The State of the Art (Cont'd) Techniques: Neural Networks (Cont'd)

- Modern ANN use multiple hidden layers and sophisticated learning algorithms on very large training sets to infer input-output mappings for a wide variety of tasks.
- Such mappings have shown human-level speed, e.g., speech recognition, and in some cases better than human-level accuracy, e.g., financial advice, and once created are often much cheaper to use than humans.
- Potential problems:
 - Need enough data (and processing power).
 - Need appropriate / representative data
 - ANN may not operate correctly on new inputs.
 - ANN very difficult to understand

Artificial Intelligence: The State of the Art (Cont'd) Applications: Computer Games

Ke Jie vs. Deepmind's AlphaGo (2017)

Artificial Intelligence: The State of the Art (Cont'd) Applications: Intelligent Agents

IBM's Watson wins Jeopardy! (2011)

Artificial Intelligence: The State of the Art (Cont'd) Applications: Intelligent Agents (Cont'd)

Siri (Apple; 2010)

Echo (Amazon; 2015)

Artificial Intelligence: The State of the Art (Cont'd) Applications: Robots

Google's self-driving car (2016)

Artificial Intelligence: The State of the Art (Cont'd) Applications: Robots (Cont'd)

Aiko Chihira – Robot Receptionist (2015)

Artificial Intelligence: The State of the Art (Cont'd) Applications: Robots (Cont'd)

Real Doll Sex Robots Showcase (2017)

The Joys of Artificial Intelligence

- Replacement of humans by AI in physically demanding / dangerous / non-rewarding situations (*e.g.*, battlefield, child / elder care).
- Easier / more natural interaction with computers on focused topics (*e.g.*, psychological / medical advice).
- Long-overdue re-assessment of the nature of humanity.

The Perils of Artificial Intelligence

- Financial trauma from AI replacing people in jobs.
- Psychological or physical trauma from assumption of intelligence and/or understanding where none is present (*e.g.*, chatbots, battlefield robots).
- Lowering of human standards for treatment of other humans (*e.g.*, child / elder care)

Case Study: AI in the Workplace

Flippy (2018)

Case Study: AI in the Workplace (Cont'd)

Jaquard loom (1802)

- Debates about machines taking human jobs date back to the Industrial Revolution.
- John Maynard Keynes (1883–1946): Technology eliminates jobs, not work, e.g., blacksmiths ⇒ auto workers, and technological displacement is a temporary but necessary stepping stone for economic growth (Markoff (2015), p. 74).

Case Study: AI in the Workplace (Cont'd)

- 1950s debates about machines taking human jobs inspire 1964 US National Commission on Technology, Automation, and Economic Progress; the Commission's 1966 report backed traditional Keynesian view.
- Robots in factories starting in 1960s eliminate certain blue-collar jobs, and certain white-collar jobs eliminated in 1970s and 1980s by personal computer technology, e.g., typesetters ⇒ ???.
- With success of Artificial Intelligence (AI) technologies since mid-2000s, more types of jobs, e.g., taxi and truck drivers, and certain professions, e.g., lawyers, doctors, financial analysts, are under threat in the near future,

Case Study: AI in the Workplace (Cont'd)

- Given that Weak (and maybe one day, Strong) AI systems are coming into the workplace, what can we do about it?
 - 1. Use the law to limit workplace AI, e.g., driverless cars in India.
 - 2. Keep human beings "in the loop" by focusing on Intelligence Augmentation (IA) rather than AI, e.g., driver-assisting cars.
 - 3. Make (groups of) human beings owners of AI systems, e.g., 5th Generation Project (Japan, 1980s).
 - 4. Use profits derived by using AI systems to establish universal basic incomes.
 - 5. Do nothing, e.g., Vonnegut (1952).

Case Study: ELIZA and Other Chatbots

- Created by Joe Weizenbaum in the mid-1960's as a simulation of a Rogerian psychotherapist.
- Simulates intelligent conversation using pattern-matching and response frames (same mechanisms used by modern chatbots).
- Many human beings trust and confide in ELIZA, even when they know ELIZA does not and cannot understand them or their problems.
- Similar confusion when dealing with modern chatbots, *e.g.*, falling in love with a chatbot (Epstein (2007)).

Case Study: ELIZA and Other Chatbots (Cont'd)

Talk to Eliza

```
> Hello, I am Eliza.
* I have many problems.
> Don't you ever say Hello?
* No. That's one of my problems. Rudeness.
> You are being a bit negative.
* Yes, I'm very negative most of the time. It runs in my
family.
> Did you come to me because you are very negative most
of the time. It runs in your family?
* I'm amazed by your insight. Yes, that's it. You're
amazing.
> Perhaps you would like to be amazing?
   Input:
```

Surviving and Thriving with Artificial Intelligence

- Know actual (and do not over- or under-estimate) capabilities of AI systems.
- Beware of exaggerated claims of AI system abilities.
- Until AI systems are actually sentient and capable of being responsible for their actions, assign responsibility to the creators of these systems, not the systems themselves.
- Do not over- or under-estimate the abilities or value of human beings – we may only be mechanisms, but we are beautiful and powerful mechanisms worthy of respect.

"Don't Panic" – *The Hitchhiker's Guide to the Galaxy* "Let's be careful out there" – *Hill Street Blues*