
Computer Science 1000: Part #6

System Software

SYSTEM SOFTWARE: AN OVERVIEW

ASSEMBLERS AND ASSEMBLY LANGUAGE

OPERATING SYSTEMS

IMPLEMENTING SYSTEM SOFTWARE

System Software: An Overview
• “Naked” computer hard to deal with, e.g.,

1. Write machine language program.
2. Load program into memory starting at address 0.
3. Load 0 into PC and start execution.

• Need virtual machine interface, which does the following:

• Hides details of machine operation.
• Does not require in-depth knowledge of machine

internals.
• Provides easy access to system resources.
• Prevents accidental or intentional damage to

hardware, programs, and data.

• Create virtual machine and associated interface with
system software.

System Software: An Overview (Cont’d)

System Software: An Overview (Cont’d)

• System software provided by Operating System (OS).
• Many types of system software in an OS, e.g.,

• Graphical User Interface (GUI): Access system
services.

• Language services: Allow programming in high-level
languages, e.g., text editor, assembler, loader,
compiler, debugger.

• Memory manager: Allocate memory for programs
and data and retrieve memory after use.

• Information manager: Organize program and data
files for easy access, e.g., folders, directories.

• I/O system manager: Access I/O devices.
• Scheduler: Manage multiple active programs.

System Software: An Overview (Cont’d)

System Software: An Overview (Cont’d)

OS dramatically simplifies creation of software, e.g.,

1. Write source program P in high-level programming
language using a text editor.

2. Use an information manager to store P as a file in a
directory.

3. Use a compiler and an assembler to translate P into an
equivalent machine language program M.

4. Use scheduler to load, schedule, and run M (with
scheduler calling memory manager and loader).

5. Use I/O system manager to display output on screen.
6. If necessary, use debugger to isolate and text editor to

correct program errors.

Assemblers and Assembly Language:
Overview

• An assembly language is the human-friendly version of a
machine language, courtesy of several features:

• Symbolic op-codes, e.g., ADD, COMPARE;
• Symbolic memory addresses and labels, e.g., IND,
ONE, AFTERLOOP; and

• Pseudo-ops which specify extra assembler directives,
e.g., .DATA, .BEGIN, .END.

• An assembler converts an assembly language source
program into a machine language object program; a
loader then places the instructions in that object program
in the specified memory addresses.

Assemblers and Assembly Language:
Overview (Cont’d)

Assemblers and Assembly Language:
Overview (Cont’d)

Assemblers and Assembly Language:
An Example Assembly Language

OC Instruction Meaning
0 LOAD Lbl CON(Lbl) −→ R
1 STORE Lbl R −→ CON(Lbl)
2 CLEAR Lbl 0 −→ CON(Lbl)
3 ADD Lbl R + CON(Lbl) −→ R
4 INCREMENT Lbl CON(Lbl) + 1 −→ CON(Lbl)
5 SUBTRACT Lbl R− CON(Lbl) −→ R
6 DECREMENT Lbl CON(Lbl)− 1 −→ CON(Lbl)
7 COMPARE Lbl if CON(Lbl) > R then GT = 1 else 0

if CON(Lbl) = R then EQ = 1 else 0
if CON(Lbl) < R then LT = 1 else 0

8 JUMP Lbl ADDR(Lbl) −→ PC
9 JUMPGT Lbl if GT = 1 then ADDR(Lbl) −→ PC

Assemblers and Assembly Language:
An Example Assembly Language (Cont’d)

OC Instruction Meaning
10 JUMPEQ Lbl if EQ = 1 then ADDR(Lbl) −→ PC
11 JUMPLT Lbl if LT = 1 then ADDR(Lbl) −→ PC
12 JUMPNEQ Lbl if EQ = 0 then ADDR(Lbl) −→ PC
13 IN Lbl Store input value at ADDR(Lbl)
14 OUT Lbl Output CON(Lbl)
15 HALT Stop program execution

Pseudo-op Meaning
.DATA Val Create memory cell with value Val
.BEGIN Begin program translation process
.END End program translation process

Assemblers and Assembly Language:
An Example Assembly Language (Cont’d)
• Access .DATA-created values with symbolic labels, e.g.,

NEGSEVEN: .DATA -7

⇓

54: 10000111

NEGSEVEN = 54

• To prevent .DATA-created values from being interpreted as
instructions, place all .DATA pseudo-ops after HALT at the
end of the program.

Assemblers and Assembly Language:
Example Assembly Language Code

set A to the value of B + C LOAD B
ADD C
STORE A
· · ·

A: .DATA 1
B: .DATA 2
C: .DATA 3

Assemblers and Assembly Language:
Example Assembly Language Code (Cont’d)

if A > B then LOAD B
set C to the value of A COMPARE A

else JUMPGT IFPART
set C to the value of B LOAD B

STORE C
JUMP ENDIF

IFPART: LOAD A
STORE C

ENDIF: · · ·
· · ·

A: .DATA 1
B: .DATA 2
C: .DATA 3

Assemblers and Assembly Language:
Example Assembly Language Code (Cont’d)

set IND to 0 CLEAR IND
while IND ≤MAXIND do LOOPSTART: LOAD MAXIND
〈LOOPBODY〉 COMPARE IND
set IND to IND + 1 JUMPGT LOOPEND

〈LOOPBODY〉
INCREMENT IND
JUMP LOOPSTART

LOOPEND: · · ·
· · ·

IND: .DATA 0
MAXIND: .DATA 25

Assemblers and Assembly Language:
An Assembly Language Program

Consider the following algorithm for computing and printing the
sum of all values in a −1-terminated list:

Step Operation
1. Set SUM to 0
2. Read the first list value into CURVAL
3. while (CURVAL 6= −1) do
4. Set SUM to SUM + CURVAL
5. Read the next list value into CURVAL
6. Print the value of SUM
7. Stop

Let’s implement this algorithm in assembly language.

Assemblers and Assembly Language:
An Assembly Language Program (Cont’d)

.BEGIN
Step 2 IN CURVAL
Step 3 LOOPSTART: LOAD ENDVAL

COMPARE CURVAL
JUMPEQ LOOPEND

Step 4 LOAD SUM
ADD CURVAL
STORE SUM

Step 5 IN CURVAL
JUMP LOOPSTART

Step 6 LOOPEND: OUT SUM
Step 7 HALT
Step 1 SUM: .DATA 0

CURVAL: .DATA 0
ENDVAL: .DATA -1

.END

Assemblers and Assembly Language:
The Assembly Process

• Duties of the assembler:

1. Translate symbolic op-codes into binary.
2. Translate symbolic addresses and labels into binary.
3. Execute all pseudo-ops.
4. Place translation in object program file.

• As symbolic addresses and labels may be used before
they are defined, translation done in two passes:

Pass 1 : Accumulate all symbolic label / binary
address bindings in symbol table.

Pass 2 : Resolve all symbolic label references.

• Op-code / symbolic label lookup typically optimized by
alphabetic op-code / label sorting and binary search.

Assemblers and Assembly Language:
The Assembly Process (Cont’d)

Assemblers and Assembly Language:
The Assembly Process (Cont’d)

Operating Systems
Major duties of an operating system:

• User Interface: Accept system commands from user
and, if these commands are valid, schedule appropriate
system software to execute command.

• System Security and Protection: Determine valid users
and valid activities and accesses for users using
usernames, passwords, and access control lists.

• Efficient Management of Resources: Optimize
processor use by maintaining Running (active program),
Ready (programs ready to execute), and Waiting
(programs waiting on I/O requests) queues.

• The Safe Use of Resources: Prevent deadlock (two or
more users have partial required resources) using
resolution algorithms and protocols.

Implementing System Software: Compilers

Grace Hopper
(1906–1992)

• A compiler translates a program in
a high-level programming language
into a behaviorally equivalent
program in a lower-level
programming language.

• First compilers developed by Grace
Hopper in early 1950s.

• Compilers can be cascaded, e.g.,
high-level language⇒ medium-
level language⇒ assembly
language⇒ machine language.

Implementing System Software:
Programming Languages

John Backus
(1924–2007)

Grace Hopper teaching
COBOL (early 1960’s)

• FORTRAN (FORmula TRANslation) created by Backus
team at IBM in 1957; designed for scientific computation.

• COBOL (COmmon Business-Oriented Language) created
by industry / government committee in 1959.

Implementing System Software:
Programming Languages (Cont’d)

• BASIC (Beginner’s All-purpose Symbolic Instruction Code)
created by Thomas Kurtz (1928–) and John Kemeney
(1926-1992) at Dartmouth College in 1964.

• Designed as a programming language for everyone.

Implementing System Software:
Operating Systems

• OS only possible after sufficient computer memory
available for system software starting around 1955.

• Three OS generations to date:

1. Single-user batch-style OS (1955–1965)
Run multiple programs in sequence with aid of Job
Control Language (JCL).

2. Multi-user time-sharing OS (1965–1985)
Run multiple programs in apparent parallel by
swapping programs in and out of the control unit.

3. Multi-user network OS (1985–present)

• Future OS will incorporate multimedia user interfaces (e.g.,
voice / gesture-based) and fully distributed execution.

Implementing System Software:
User Interfaces

Doug Engelbart
(1925-2013)

Computer Mouse
(1965)

• Engelbart and colleagues develop graphical user interface
(GUI) and computer mouse at Stanford starting in 1963.

Implementing System Software:
User Interfaces (Cont’d)

“The Mother of All Demos” (1968)

Implementing System Software:
User Interfaces (Cont’d)

Xerox Alto (1973) [$25K (est)] Xerox Star (1981) [$75K]

• Alto was first modern GUI-driven PC; also incorporated
local-area networking and laserjet printers (WYSIWYG).

• Star intended for use in large corporations.

Implementing System Software:
User Interfaces (Cont’d)

Implementing System Software:
User Interfaces (Cont’d)

Apple Macintosh (1984) [$2,500]

• Starting in 1979, Steve
Jobs re-creates GUI-
based functionality at
Apple in the Lisa and
Macintosh PCs.

• Part of Macintosh
application and OS
development sub-
contracted to Microsoft
starting in 1981.

Implementing System Software:
User Interfaces (Cont’d)

• Microsoft releases Windows
v1.0 in 1985; legally emulated
portions of Lisa and Mac look.

• Microsoft releases Windows
v2.0 in late 1987; is not only
much faster but (now illegally)
identical to Mac look.

• Apple sues Microsoft over
Windows 2.0 “look and feel” in
1988; case dismissed in 1991.

• By late 1980s, Windows has
90% market-share in GUI-
based PC computing.

. . . And If You Liked This . . .

• MUN Computer Science courses on this area:

• COMP 2001: Object-oriented Programming and HCI
• COMP 2003: Operating Systems
• COMP 4712: Compiler Construction

• MUN Computer Science professors teaching courses /
doing research in in this area:

• Ed Brown
• Rod Byrne
• Oscar Meruvia-Pastor

