
Computer Science 1000: Part #10

Theoretical Computer Science

ASSESSING ALGORITHM EFFICIENCY

PROVING FAST UNSOLVABILITY

PROVING GENERAL UNSOLVABILITY

Assessing Algorithm Efficiency

• In general, the best algorithm is the one with the lowest
running time.
• Comparing algorithms by raw running time problematic:

• Raw running times machine / language / OS dependent.
• Raw running times input dependent.
• Algorithm may not be implemented in a program.

• Need an abstract mathematical conception of algorithm
efficiency, phrased in terms of a function of input size n,
which is easily usable and comprehensible.
• The three abstractions involved in the conception sketched

here can be viewed as necessary lies.

Necessary Lie #1:
Focus on Important Instructions

A

B

C

D

E

F

GH

I K

K

L

M
N

O

P

Q

R

S
T

U

• Compute runtime on an input by counting the number of
important instructions that are executed.
• Is machine-independent (raw abstract runtime).

Necessary Lie #2:
Worst-Case Runtime Summary

E

B

H

D

C

A

I

GK

L

M

O

N

F

J

Input Size

Run

Time

(n)

T(n)

• Group inputs by input size; summarize each size by largest
runtime for that size.
• Is input-independent (worst-case abstract runtime).

Necessary Lie #3:
Asymptotic Smoothing

E

B

H

D

C

A

I

GK

L

M

O

N

F

J

Input Size

Run

Time

(n)

T(n)

O(f(n))

• Reduce worst-case abstract runtime function to largest
term.
• Is simple (asymptotic worst-case abstract runtime, i.e.,

worst-case time complexity).

Deriving Worst-Case Time Complexities

If already have worst-case abstract runtime function, select
largest term, e.g.,

2 log n + 4 ⇒ O(log n)

3n2 + 1000n + 13 ⇒ O(n2)

12n4 + 5n2 + 900 ⇒ O(n4)

(3× 2n) + 900n50 + 57 ⇒ O(2n)

Deriving Worst-Case Time Complexities (Cont’d)

Otherwise, multiply out “deepest” loop-chain in algorithm, e.g.,
n× n = O(n2) time for Selection Sort.

Get values for list L and n
ENDUNSORTED = n
While (ENDUNSORTED > 1) do

FOUNDPOS = 1
for INDEX = 2 to ENDUNSORTED do

If LINDEX > LFOUNDPOS then
FOUNDPOS = INDEX

TMP = LENDUNSORTED
LENDUNSORTED = LFOUNDPOS
LFOUNDPOS = TMP
ENDUNSORTED = ENDUNSORTED - 1

. . . And This All Matters Because? . . .

• Considering all instructions rather than just important ones
only increases raw abstract runtime and hence worst-case
abstract runtimes by constant multiplicative factors. But
this is not the problem that if we want to solve larger and
larger inputs (living in Asymptopia).
• Could consider best- or average-case time complexity;

however, worst-case best when trying to plan using
algorithm-produced results in the real world, e.g., aircraft
collision avoidance.
• Asymptotic smoothing gives much simpler functions than

worst-case abstract runtimes, which eases algorithm
comparison.

Time Complexity Orders of Magnitude

O(log n) Logarithmic Time (Binary Search)

O(n) Linear Time (Sequential Search)

O(n2) Quadratic Time (List Sort)

O(2n) Exponential Time (Bin Packing #1)

Polynomial Time = O(nc) time for constant c

Table of Doom (1 Petaflop (1015) /s)

Time Complexity
Input S-Search Sort MST BP#1,IF

Size (n) (n) (n2) (n3) (2n)
50 < 1 < 1 < 1 1.12

second second second seconds
100 < 1 < 1 < 1 4× 107

second second second years
1000 < 1 < 1 < 1 4× 10278

second second second years
one < 1 < 1 16 –

million second second minutes
300 < 1 < 1 323 –

million second second days
five < 1 7 4× 106 –

billion second hours years

Proving Fast Unsolvability

• Some problems are solvable in polynomial time, e.g.,
binary search, list sorting, and can be solved in practice for
large input sizes; some, e.,g., Bin Packing and Integer
Factorization, cannot.
• With problems that are not known to be solvable in

polynomial time, have we just not thought of a good
algorithm yet, or are they genuinely intractable?

HOW CAN WE PROVE FAST UNSOLVABILITY?

The Key to Proving Fast Unsolvability:
Arm Wrestling

Arnold Betty

Best in Two?
The Logic of Pairwise Comparison

If we know that

Arnold Bettybeaten by
.

and Betty is easy to beat, what do we know about Arnold?

Best in Two?
The Logic of Pairwise Comparison (Cont’d)

If we know that

Arnold Bettybeaten by
.

and Arnold is hard to beat, what do we know about Betty?

Best in Two?
The Logic of Pairwise Comparison (Cont’d)

Arnold Bettybeaten by
.

hard to beat

easy to beat

• Establish better arm wrestler by a two-person match.
• If Arnold is beaten by Betty:

1. Arnold is no better than Betty
(if Betty is easy to beat then Arnold is easy to beat)

2. Betty is at least as good as Arnold
(if Arnold is hard to beat then Betty is hard to beat)

Best in Group?
Pairwise Comparison in Groups

G

G−best

• Establish best arm wrestler in group G by a tournament
composed of two-person matches.
• The winner of a tournament is at least as good as

everybody else in the group.

Reductions between Problems
A reduction from problem A to problem B (A reduces to B) is
an algorithm for solving A that uses an algorithm for solving B.

blah blah blah

blah blah

........

.........

Algorithm solveA(x):

blah blah

to create answer

process x, y, and z

create y from x

z = solveB(y)

return answer

Focus here on polynomial-time (pt-) reductions, i.e., all
dashed-box processing above done in polynomial time.

Reductions between Problems: An Example

Consider the following reduction between the problem of finding
the 3rd largest element in a given list L (3rdLargest(L);
Assignment #2, Question #2) and the problem of sorting a
given list L in ascending order (SortAscending(L)):

Algorithm 3rdLargest(L):

Set n to length of L

LS = SortAscending(L)

return LS[n − 2]

Observe that this is a polynomial-time reduction.

Hardest in Two?
The Logic of Reducibility

If we know that

. .

A
Problem Problem

B
.pt−reduces to

and Problem B is easy to solve (i.e., Problem B is solvable in
polynomial time), what do we know about Problem A?

Hardest in Two?
The Logic of Reducibility (Cont’d)

If we know that

. .

A
Problem Problem

B
.pt−reduces to

and Problem A is hard to solve (i.e., Problem A is not solvable
in polynomial time), what do we know about Problem B?

Hardest in Two?
The Logic of Reducibility (Cont’d)

. .

A
Problem Problem

B
.

hard to solve

easy to solve

pt−reduces to

• Establish harder problem by poly-time reduction.
• If problem A reduces to problem B:

1. A is no harder than B
(if B is easy to solve then A is easy to solve)

2. B is at least as hard as A
(if A is hard to solve then B is hard to solve)

Hardest in Class?
Reducibility in Classes

C

C−comp

• Establish hardest problem in class C by reductions.
• The hardest problems in C (the C-Complete problems) are

at least as hard as any problem in C.

Harder than Class?
The Logic of Class Inclusion (Part I)

C2

C1

C1−comp C2−comp

• Suppose we have two classes C1 and C2 such that C1 is
fully contained in C2.
• If a problem is C2-Complete, then that problem is properly

harder than any problem in C1 and hence not in C1.

Harder than Poly-Time?
The Logic of EXPTIME-Completeness

P

EXPTIME

EXPTIME−COMP

• Let P and EXPTIME be the classes of poly-time and
exponential-time solvable problems, respectively.
• As we know that P is fully contained in EXPTIME, i.e.,

P 6= EXPTIME, if a problem is EXPTIME-Complete, then
that problem is not poly-time solvable.

Harder than Class?
The Logic of Class Inclusion (Part II)

C2

C1

C1−comp C2−comp

• Suppose we have two classes C1 and C2 such that C1 is
contained (but not necessarily fully contained) in C2.
• If a problem is C2-Complete, then that problem is harder

than any problem in C1 under the conjecture that C1 is fully
contained in C2, i.e., C1 6= C2.

Harder than Poly-Time?
The Logic of NP-Completeness

P

NP

NP−comp

• Let P be the class of poly-time solvable problems and P be
contained (but not necessarily fully contained) in class NP.
• If a problem is NP-Complete, then that problem is not

poly-time solvable under the conjecture that P is fully
contained in NP, i.e., P 6= NP.

Dealing with Intractability

• First NP-Complete problem proven in 1971; tens of
thousands proven since (including Bin Packing and many
other industrially-important problems (but not Integer
Factorization)).
• Unless P = NP, no NP-complete problem can be solved in

poly-time . . . but we still need to solve these problems!!!
• Consider less restrictive types of fast solvability, e.g.,

polynomial-time approximability (Bin Packing #2), and fall
back on non-polynomial time algorithms if necessary . . .

. . . assuming every problem has an algorithm . . .

Proving General Unsolvability: An Overview

Alan Turing
(1912-1954)

Turing A. M.. “On computable
numbers, with an application
to the Entscheidungsproblem.”
Proceedings of the London
Mathematical Society, 2 s. vol.
42 (1936–1937), pp. 230–265.

Proving General Unsolvability: An Overview (Cont’d)

• To investigate the question of whether every problem has
an algorithm, i.e., whether every problem is solvable, need
basic model of computation (cf. computational time
complexity as basic model for investigating algorithm
runtime).
• Typical properties of a model compared to the real thing

being modeled:

1. Captures important properties of real thing.
2. Probably differs in scale from real thing.
3. Omits some details of real thing.
4. Lacks full functionality of real thing.

Proving General Unsolvability: An Overview (Cont’d)

• Every model based on assumptions, and information
derived with a model is only as good as those
assumptions.
• Necessary properties of a model of a computing agent:

1. Accepts input.
2. Can store and retrieve information wrt memory.
3. Acts on stored algorithm instructions based on the

current state of and the data item currently being
processed by the agent.

4. Produces output.

• Many models of computation proposed in early 20th
century in response to Hilbert’s Program.

Proving General Unsolvability: An Overview (Cont’d)

David Hilbert
(1862–1943)

Kurt Gödel
(1906–1978)

• Hilbert (1920): Formalize mathematical proof to eliminate
ambiguities and allow automation of proof.
• Gödel (1931): Every reasonable arithmetic system has

true statements that are unprovable in that system.

Turing Machines

b b b b1 10

1. ((S1,0),(1,S2,R))

2. ((S1,1),(1,S2,R))

3. ((S2,0),(1,S2,R))

4. ((S2,1),(0,S2,R))

5. ((S2,b),(b,S3,L))

state

tape

instructions

(S1,0) configuration

read/write head

S1

......

Turing Machines (Cont’d)

• A Turing Machine consists of (1) a two-way infinite tape,
(2) a tape-square alphabet, (3) a read/write head that can
be positioned on any tape square, (4) a set of states { S1,
S2, . . . , Sn }, and (5) a set of instructions.
• The tape functions as input, memory, and output at TM

start, execution, and termination.
• The alphabet can be any number of symbols plus a special

blank (b) symbol; focus here on the alphabet { b, 0, 1 }.
• At any given time, a TM is in a particular state Si and the

read/write head is reading symbol x; this pair (Si, x) is
called the TM’s configuration.

Turing Machines (Cont’d)

• A TM instruction specifies what the TM does next when it
is in a specified configuration, e.g.,

if state is S1 and symbol is 0 then
write 1 in current tape square
set state to S2
move r/w head one square right

m
((1,0),(1,2,R))

Turing Machines (Cont’d)

• Starting from an initial configuration, a TM executes
instructions until it halts.
• TM operation conventions:

1. The input is placed on the TM tape.
2. The initial position of the TM read/write head is the leftmost

non-blank tape square, i.e., the leftmost square of the input.
3. The initial TM state is S1.
4. At each point, there is at most one instruction that matches

the current TM configuration, i.e., the TM is deterministic.
5. The TM halts when there is no instruction that matches the

current TM configuration.
6. On halting, the output is the contents of the TM tape.

• Note that TM instructions execute in TM-configuration
order, not instruction-order, cf. Python programs.

Turing Machines (Cont’d)

b b b b1 10
S1

b b b b1 1

b b b b

b b b b

b b b b

1

S2

S2

1 0

S2

1

1 0 0

1 0 0

S3

5. ((S2,b),(b,S3,L))

4. ((S2,1),(0,S2,R))

initial

halt

1. ((S1,0),(1,S2,R))

4. ((S2,1),(0,S2,R))

Turing Machines (Cont’d)

b b b b1
S1

b b b b1

b b b b

b b b b

b b b b

1

S2

S2

1 0

S2

1 0

1 0

S3

5. ((S2,b),(b,S3,L))

initial

halt

4. ((S2,1),(0,S2,R))

1 0

2. ((S1,1),(1,S2,R))

0

0

3. ((S2,0),(1,S2,R))

1

1

Turing Machines (Cont’d)
• A TM is an adequate model of computing agent:

1. Accepts input: TM encodes input on and reads
symbols from tape.

2. Can store and retrieve information wrt memory:
During execution, TM writes symbols on and later can
read these symbols from tape.

3. Acts on stored algorithm instructions based on
the current state of and the data item currently
being processed by the agent: TM configuration
dictates executed instruction.

4. Produces output: If TM halts, tape is output.

• TM are more capable from real computers because TM
tape (memory) is unlimited; hence, a task that is
TM-solvable might not be real-computer-solvable.

Turing Machines (Cont’d)

• A TM instruction-set is an algorithm:

1. Is well-ordered: As our TM are deterministic, at most
one instruction executable for any TM configuration.

2. Consists of unambiguous and effectively
computable operations: TM instructions are
unambiguous to TMs.

3. Halts in finite time: Relative to TM-appropriate
inputs, a TM always halts (appropriate inputs also key
to algorithms halting).

4. Produces output: Output is tape contents after
execution and halting on TM-appropriate input.

• When we write a TM for a task, we write a set of TM
instructions to do that task.

Proving General Unsolvability:
The Church-Turing Thesis

• We know that every TM is an algorithm — does every
algorithm have a corresponding TM?

The Church-Turing Thesis: For every symbol-
manipulation algorithm there is a TM.

• Not provable, but two lines of evidence:

1. Every proposed s-m algorithm has a TM.
2. TM can simulate and is thus equivalent to other

proposed models of computation.

• C-T Thesis⇒ TM defines limits of solvability!

Proving General Unsolvability:
The Church-Turing Thesis (Cont’d)

Proving General Unsolvability:
The Halting Problem

• Easy to prove if a given TM halts on a given configuration;
what about if a given TM halts on a given input (Halting
Problem), e.g., does the TM with instruction-set

((S1,b),(b,S1,R))
((S1,0),(0,S1,R))
((S1,1),(1,S1,R))

halt on input tape . . . b000b . . . ?
• Prove that HP is unsolvable by contradiction — that is,

start by assuming that HP is solvable and then derive
something that is impossible, which is a contradiction and
would hence imply that HP is not solvable.

Proving General Unsolvability:
The Halting Problem (Cont’d)

Suppose you have a TM P that solves HP:

T*bt

Halts with 1

if T halts on t

Halts with 0

if T does not

halt on t

TM P

Proving General Unsolvability:
The Halting Problem (Cont’d)

Modify TM P to create TM Q:

T*bt

if T halts on t

Halts with 0

if T does not

halt on t

Does not halt

TM Q

Proving General Unsolvability:
The Halting Problem (Cont’d)

Modify TM Q to create TM S:

Halts with 0Does not halt

TM Q

S*bS*

if S halts on S* if S does not

halt on S*

S*

TM S

. . . which is impossible — hence, HP is not solvable!

Proving General Unsolvability:
The Halting Problem (Cont’d)

• The unsolvability of HP has practical consequences:

• No program can decide if a given program halts on all
possible inputs.
• No program can decide if two given programs produce

the same output for all possible inputs.
• No program can decide if a given program run on a

given input will produce a given output.

• The Fine Print: All of this unsolvability holds in general,
i.e., relative to all possible programs and inputs — there
may yet be programs that work relative to specific classes
of given programs, e.g., programs that halt in ≤ 109 steps.

. . . And If You Liked This . . .
• MUN Computer Science courses on this area:

• COMP 2002: Data Structures and Algorithms
• COMP 4740: Design and Analysis of Algorithms
• COMP 4741: Formal Languages and Computability
• COMP 4742: Computational Complexity

• MUN Computer Science professors teaching courses /
doing research in in this area:

• Xianta Jiang
• Antonina Kolokolova
• Amilcar Soares
• Todd Wareham

