Computer Science 1000: Part #6

System Software

SYSTEM SOFTWARE: AN OVERVIEW
OPERATING SYSTEMS
ASSEMBLERS AND ASSEMBLY LANGUAGE

IMPLEMENTING SYSTEM SOFTWARE

System Software: An Overview

* “Naked” computer hard to deal with, e.g.,

1. Write machine language program.
2. Load program into memory starting at address 0.
3. Load 0 into PC and start execution.

* Need virtual machine interface, which does the following:

* Hides details of machine operation.

® Does not require in-depth knowledge of machine
internals.

* Provides easy access to system resources.

® Prevents accidental or intentional damage to
hardware, programs, and data.

e Create virtual machine and associated interface with
system software.

System Software: An Overview (Cont'd)

Virtual machine interface Actual machine interface

Interface A Interface B
System software Hard

The virtual machine

Figure 6.1 The Role of System Software

Invitation to Computer Science, 6th Edition 5

Operating Systems

e System software provided by Operating System (OS).
e Many types of system software in an OS, e.g.,

Graphical User Interface (GUI): Access system
services.

Language services: Allow programming in high-level
languages, e.g., text editor, assembler, loader,
compiler, debugger.

Memory manager: Allocate memory for programs
and data and retrieve memory after use.
Information manager: Organize program and data
files for easy access, e.g., folders, directories.

I/0 system manager: Access I/O devices.
Scheduler: Manage multiple active programs.

Operating Systems (Cont’d)
Major duties of an operating system:

e User Interface: Accept system commands from user
and, if these commands are valid, schedule appropriate
system software to execute command.

e System Security and Protection: Determine valid users
and valid activities and accesses for users using
usernames, passwords, and access control lists.

e Efficient Management of Resources: Optimize
processor use by maintaining Running (active program),
Ready (programs ready to execute), and Waiting
(programs waiting on 1/O requests) queues.

e Safe Use of Resources: Prevent deadlock (two or more

users have partial required resources) using resolution
algorithms and protocols.

Operating Systems (Cont’d)

OS dramatically simplifies creation of software, e.g.,

1.

Write source program P in high-level programming
language using a text editor.

Use an information manager to store P as afile in a
directory.

Use a compiler and an assembler to translate P into an
equivalent machine language program M.

Use scheduler to load, schedule, and run M (with
scheduler calling memory manager and loader).

Use I/0O system manager to display output on screen.

If necessary, use debugger to isolate and text editor to
correct program errors.

Assemblers and Assembly Language

¢ An assembly language is the human-friendly version of a
machine language, courtesy of several features:

e Symbolic op-codes, e.g., ADD, COMPARE;

* Symbolic memory addresses and labels, e.g., IND,
ONE, AFTERLOOP;and

* Pseudo-ops which specify extra assembler directives,
e.g., .DATA, .BEGIN, .END.

e An assembler converts an assembly language source
program into a machine language object program; a
loader then places the instructions in that object program
in the specified memory addresses.

Assemblers and Assembly Language (Cont'd)

Machine Assembly Programming languages English, Spanish,
language language such as C++, Java Pseudocode Japanese, . ..
L I

l | |
I I I I 1

Low-level languages m qmmmm High-leve! languages) g Noturol languages

[not related to

closely related to
the hardware)

i o o) {more removed from details of the hardware]

Figure 6.3
The Continuum of Programming Languages

Invitation to Computer Science, Java Version, Third Edition 15

Assemblers and Assembly Language:
An Example Assembly Language

OC Instruction Meaning

0 LOAD Lbl CON(Lbl) — R

1 STORE Lbl R — CON(LbI)

2 CLEAR 1bl 0 — CON(LbI)

3 ADD 1bl R+ CON(Lbl) — R

4 INCREMENT Lbl CON(Lbl)+1— CON(LbI)

5 SUBTRACT Lbl R —CON(Lb) — R

6 DECREMENT Lbl CON(Lbl) —1— CON(LbI)

7 COMPARE Lbl if CON(Lbl) > R then GT =1 else 0
if CON(Lbl) = Rthen EQ =1 else 0
if CON(Lbl) < Rthen LT =1 else 0

8 JUMP 1bl ADDR(Lbl) — PC

9 JUMPGT Lbl if GT = 1 then ADDR(Lbl) — PC

Assemblers and Assembly Language:
An Example Assembly Language (Cont'd)

OC Instruction Meaning
10 JuMPEQ Lbl if EQ =1then ADDR(Lbl) — PC
11 JuMPLT Lbl if LT =1then ADDR(Lbl) — PC
12 JUMPNEQ Lbl if EQ =0then ADDR(Lbl) — PC
13 IN Lbl Store input value at ADDR(Lbl)
14 OUT Lbl Output CON(LbI)
15 HALT Stop program execution
Pseudo-op Meaning
.DATA Val Create memory cell with value Val
.BEGIN Begin program translation process
.END End program translation process

Assemblers and Assembly Language:
An Example Assembly Language (Cont'd)

e Access .DATA-created values with symbolic labels, e.g.,

NEGSEVEN: .DATA -7
4
54: | 10000111

NEGSEVEN = 54

e To prevent . DATA-created values from being interpreted as
instructions, place all .DATA pseudo-ops after HALT at the
end of the program.

Assemblers and Assembly Language:
Example Assembly Language Code

set A to the value of B + C LOAD B
ADD C
STORE A

A: .DATA 1
B: .DATA 2
C: .DATA 3

Assemblers and Assembly Language:
Example Assembly Language Code (Cont’d)

if A > Bthen LOAD B
set C to the value of A COMPARE A
else JUMPGT IFPART
set C to the value of B LOAD B
STORE C
JUMP ENDIF
IFPART: LOAD A
STORE C
ENDIF:

Al .DATA 1
B: .DATA 2
C: .DATA 3

Assemblers and Assembly Language:
Example Assembly Language Code (Cont’d)

setINDto 0

while IND < MAXIND do LOOPSTART:

(LOOPBODY)
set IND to IND + 1

LOOPEND:!:

IND:
MAXIND:.

CLEAR IND

LOAD MAXIND
COMPARE IND
JUMPGT LOOPEND
(LOOPBODY)
INCREMENT IND
JUMP LOOPSTART

.DATA O
.DATA 25

Assemblers and Assembly Language:
An Assembly Language Program

Consider the following algorithm for computing and printing the
sum of all values in a —1-terminated list:

Step Operation

1.

NoO O AWN

Set SUMto 0
Read the first list value into CURVAL
while (CURVAL # —1) do

Set SUM to SUM + CURVAL

Read the next list value into CURVAL
Print the value of SUM
Stop

Let’s implement this algorithm in assembly language.

Assemblers and Assembly Language:
An Assembly Language Program (Cont’d)

.BEGIN
Step 2 IN CURVAL
Step 3 LOOPSTART: LOAD ENDVAL

COMPARE CURVAL

JUMPEQ LOOPEND

Step 4 LOAD SUM
ADD CURVAL
STORE SUM
Step 5 IN CURVAL
JUMP LOOPSTART
Step 6 LOOPEND: OUT SUM
Step 7 HALT
Step 1 SUM: .DATA O

CURVAL: .DATA O
ENDVAL: .DATA -1
.END

Assemblers and Assembly Language:
The Bia Picture

Machine

Assembly
— language Assembler —— language Object program
program program
Seurce program l
Loader
Machine Ianguu o
ron o looded
into memory
Hardware
. Results
Figure 6.4

The Translation/Loading/Execution Process (Assembly --> M.C.)

Invitation to Computer Science, C++ Version, Third Edition

Implementing System Software: Compilers

e A compiler translates a program in
a high-level programming language
into a behaviorally equivalent
program in a lower-level
programming language.

¢ First compilers developed by Grace
Hopper in early 1950s.

e Compilers can be cascaded, e.g.,
high-level language = medium-
level language = assembly
language = machine language.

Grace Hopper
(1906-1992)

Implementing System Software:
Programming Languages

Tt

John Backus Grace Hopper teaching
(1924-2007) COBOL (early 1960’s)

e FORTRAN (FORmula TRANslation) created by Backus
team at IBM in 1957; designed for scientific computation.

e COBOL (COmmon Business-Oriented Language) created
by industry / government committee in 1959.

Implementing System Software:
Programming Languages (Cont'd)

e BASIC (Beginner’s All-purpose Symbolic Instruction Code)
created by Thomas Kurtz (1928-) and John Kemeney
(1926-1992) at Dartmouth College in 1964.

e Designed as a programming language for everyone.

Implementing System Software:
Operating Systems

e OS only possible after sufficient computer memory
available starting around 1955.

e Three OS generations to date:

1. Single-user batch-style OS (1955-1965)
Run multiple programs in sequence with aid of Job
Control Language (JCL).
2. Multi-user time-sharing OS (1965-1985)
Run multiple programs in apparent parallel by
swapping programs in and out of the control unit.
3. Multi-user network OS (1985—present)

e Future OS will incorporate multimedia user interfaces (e.g.,
voice / gesture-based) and fully distributed execution.

Implementing System Software:
User Interfaces

Doug Engelbart ~ Computer Mouse
(1925-2013) (1965)

e Engelbart and colleagues develop graphical user interface
(GUI) and computer mouse at Stanford starting in 1963.

Implementing System Software:
User Interfaces (Cont'd)

“The Mother of All Demos” (1968)

Implementing System Software:
User Interfaces (Cont'd)

e Xerox creates Palo Alto Research Center (PARC) in 1970
with aim of establishing competitive advantage.

e Half of $100M budget in 1970s spent on hiring top
computing personnel and developing advanced personal
computing technologies (“office of the future”).

Implementing System Software:
User Interfaces (Cont'd)

Xerox Alto (1973) [$25K (est)] Xerox Star (1981) [$75K]

¢ Alto was first modern GUI-driven PC; also incorporated
local-area networking and laserjet printers (WYSIWYG).

e Star intended for use in large corporations.

)

d

(Cont’

Implementing System Software:
User Interfaces

XEROX 8010 Star Information System
Avaristy of type i

Implementing System Software:
User Interfaces (Cont'd)

e Starting in 1979, Steve
Jobs re-creates GUI-
based functionality at
Apple in the Lisa and
Macintosh PCs.

e Part of Macintosh
application and OS
— development sub-
= == contracted to Microsoft
starting in 1981.

Apple Macintosh (1984) [$2,500]

Implementing System Software:
User Interfaces (Cont'd)

* Microsoft releases Windows
v1.0 in 1985; legally emulated
portions of Lisa and Mac look.

* Microsoft releases Windows
v2.0 in late 1987; is not only
= much faster but (now illegally)

identical to Mac look.

¢ Apple sues Microsoft over
Windows 2.0 “look and feel” in
1988; case dismissed in 1991.

¢ By late 1980s, Windows has
90% market-share in GUI-
based PC computing.

Apple Lisa

]

4 [T Windows 3,160)

...And If You Liked This ...

e MUN Computer Science courses on this area:

COMP 2001: Object-oriented Programming and HCI
COMP 2003: Operating Systems

COMP 3300: Interactive Technologies

COMP 4712: Compiler Construction

e MUN Computer Science professors teaching courses /
doing research in in this area:

Ed Brown

Adrian Fiech

Vinicius Prado da Fonseca
Oscar Meruvia-Pastor

