
Computer Science 1000: Part #3

Binary Numbers

COMPUTER ORGANIZATION: AN OVERVIEW

AN HISTORICAL INTERLUDE

REPRESENTING NUMBERS IN BINARY

REPRESENTING TEXT, SOUND, AND

PICTURES IN BINARY



Computer Organization: An Overview
The Von Neumann Architecture (1945)

computer

processor

data
instructions

results

memory

I/O interface

person

Also known as the stored-program architecture



Computer Organization: An Overview (Cont’d)
What is a Computer (Really)?

A computer is a machine that

(1) stores a very, very large number of
numbers and

(2) performs very, very long specified
sequences of very simple operations
on these numbers

(3) very, very fast.



Computer Organization: An Overview (Cont’d)
Guiding Principles

There are two main principles of computer organization:

1. Levels of Abstraction: A complex system can be
described as a hierarchy of levels, where collections of
interacting entities at one level are encapsulated in a single
entity at a higher level (see Textbook, Figure 5.1, p. 223).

2. Internal vs. External Representation: Within a complex
system, the representations used internally by an entity to
perform its functions need not be those with which it
interacts externally with other entities.



Computer Organization: An Overview (Cont’d)
Guiding Principles (Cont’d)



A Historical Interlude:
The Glory of Decimal Numbers

• Decimal numbers (base-10 positional notation) were
developed around 1200 years ago in the Middle East.
• Rapidly replaced older non-positional systems, e.g.,

MCMXXXVII (Roman)
(1000 + (1000− 100) + 10 + 10 + 10 + 5 + 1 + 1)

vs.

193710 (Hindu-Arabic)
((1× 103) + (9× 102) + (3× 101) + (7× 100))



A Historical Interlude: (Cont’d)
The Glory of Decimal Numbers (Cont’d)

Position Decimal

1 100 → 1
2 101 → 10
3 102 → 100
4 103 → 1000
5 104 → 10, 000
6 105 → 100, 000
7 106 → 1, 000, 000
8 107 → 10, 000, 000
9 108 → 100, 000, 000

10 109 → 1, 000, 000, 000



A Historical Interlude: (Cont’d)
The Tyranny of Decimal Numbers

Centrality of decimal numbers in mathematics led to their being
both the internal and external representations of numbers in the
earliest computing machines, e.g., the 1642 addition machine
of Blaise Pascal (1623–1662).



A Historical Interlude: (Cont’d)
The Tyranny of Decimal Numbers (Cont’d)

This reliance on decimal internal representations continued into
the early days of electromechanical computing.

Harvard Mark I
(1944)

Zuse Z3
(1941)

Colossus
(1944)



A Historical Interlude: (Cont’d)
The Glory of Binary Numbers

The emergence of fully electronic computing in the late 1940s
led to binary (base-2 positional notation) internal
representations of numbers.

16710

((1× 102) + (6× 101) + (7× 100))

vs.

101001112

((1× 27) + (0× 26) + (1× 25) + (0× 24)+
(0× 23) + (1× 22) + (1× 21) + (1× 20))



A Historical Interlude: (Cont’d)
The Glory of Binary Numbers (Cont’d)
Position Decimal Binary

1 100 → 1 20 → 1
2 101 → 10 21 → 2
3 102 → 100 22 → 4
4 103 → 1000 23 → 8
5 104 → 10, 000 24 → 16
6 105 → 100, 000 25 → 32
7 106 → 1, 000, 000 26 → 64
8 107 → 10, 000, 000 27 → 128
9 108 → 100, 000, 000 28 → 256

10 109 → 1, 000, 000, 000 29 → 512

In binary, need 10 digits to represent a factor of ≈ 1000.



A Historical Interlude: (Cont’d)
The Glory of Binary Numbers (Cont’d)

Done for reliability, e.g., distinguishing between and maintaining
two voltage levels is much easier to do than distinguishing
between and maintaining ten voltage levels.

Decimal Binary
(0) +0 +0 (0)
(1) +5
(2) +10
(3) +15
(4) +20 vs.
(5) +25
(6) +30
(7) +35
(8) +40
(9) +45 +45 (1)



A Historical Interlude: (Cont’d)
The Glory of Binary Numbers (Cont’d)

To convert a binary number to its decimal equivalent, add up
the powers of two corresponding to the 1’s in the number, e.g.,

1101012 = 25 + 24 + 22 + 20

= 32 + 16 + 4 + 1
= 5310

101011002 = 27 + 25 + 23 + 22

= 128 + 32 + 8 + 4
= 17210



A Historical Interlude: (Cont’d)
The Glory of Binary Numbers (Cont’d)

To convert a decimal number to its binary equivalent,
repeatedly divide by two and read the remainder digits in
reverse (from last to first), e.g.,

Quotient Remainder
53/2⇒ 26 1
26/2⇒ 13 0
13/2⇒ 6 1 =⇒ 1101012
6/2⇒ 3 0
3/2⇒ 1 1
1/2⇒ 0 1



A Historical Interlude: (Cont’d)
The Glory of Binary Numbers (Cont’d)

Quotient Remainder
23/2⇒ 11 1
11/2⇒ 5 1
5/2⇒ 2 1 =⇒ 101112
2/2⇒ 1 0
1/2⇒ 0 1

Quotient Remainder
8/2⇒ 4 0
4/2⇒ 2 0 =⇒ 10002
2/2⇒ 1 0
1/2⇒ 0 1



Representing Numbers in Binary

Basic base-2 positional notation (unsigned binary) can handle
the representation and addition of positive integers , e.g.,

1 1 1 1 1 1 ← carry
⇐⇒

1 1 0 1 12 2 710
+ 1 1 0 12 + 1 310

1 0 1 0 0 02 4 010

. . . But what about negative integers? . . .
. . . Or fractional numbers? . . .



Representing Numbers in Binary: (Cont’d)
Sign/Magnitude Representation

• Use leftmost bit to encode sign (+ve as 0, -ve as 1), e.g.,

Negative Positive

−010 1002 0002 +010
−110 1012 0012 +110
−210 1102 0102 +210
−310 1112 0112 +310

• Has two representations of zero, and both can arise during
arithmetic; this causes problems for computer designers.



Representing Numbers in Binary: (Cont’d)
Sign/Magnitude Representation (Cont’d)

Negative Positive

−010 10002 00002 +010
−110 10012 00012 +110
−210 10102 00102 +210
−310 10112 00112 +310
−410 11002 01002 +410
−510 11012 01012 +510
−610 11102 01102 +610
−710 11112 01112 +710



Representing Numbers in Binary: (Cont’d)
Two’s Complement Representation

• Represent negative number by taking unsigned binary
positive version and starting after rightmost 1, complement
every bit to the left (see also Textbook, p. 160), e.g.,

Negative Positive

— 0002 +010
−110 1112 0012 +110
−210 1102 0102 +210
−310 1012 0112 +310
−410 1002 —

• Has one zero but more negative than positive numbers.



Representing Numbers in Binary: (Cont’d)
Two’s Complement Representation (Cont’d)

Negative Positive

— 00002 +010
−110 11112 00012 +110
−210 11102 00102 +210
−310 11012 00112 +310
−410 11002 01002 +410
−510 10112 01012 +510
−610 10102 01102 +610
−710 10012 01112 +710
−810 10002 —



Representing Numbers in Binary: (Cont’d)
Two’s Complement Representation (Cont’d)
• Another way to get the negative version of a number x in

two’s complement is to toggle all the bits of the positive
binary version of that number and add 1, e.g.,

0 1 1 1 710
⇓

1 0 0 0 710 (toggled)
+ 0 0 0 1 Add 1

1 0 0 1 −710

• Note that in two’s complement representation (unlike sign
magnitude), when you add x and −x, you get zero.



Representing Numbers in Binary: (Cont’d)
Fractional Numbers

• Store in scientific notation (M× BE) where base B = 2,
mantissas (M) and exponents (E) are stored in signed
binary notation, and mantissas are normalized, e.g.,



Representing Numbers in Binary: (Cont’d)
Fractional Numbers (Cont’d)

Example: Representing 5.7510 as a fractional number

• 510 = 4 + 1 = 22 + 20 = 1012 and
.7510 = 1/2 + 1/4 = 2−1 + 2−2 = .112;
Therefore, 5.7510 = 101.112

• Normalize 101.112, e.g.,
101.112 = 101.112 × 20

= 10.1112 × 21

= 1.01112 × 22

= .101112 × 23

• Encode M = +.101112 and E = +310 = +112, i.e.,

0 + 00010111 + 0 + 000011



Representing Numbers in Binary: (Cont’d)
More Compact Representations

Long binary numbers represented more compactly in
hexadecimal (16 digit; 0, 1, . . . , 9,A(10),B(11),C(12),
D(13),E(14),F(15)), e.g.,

A (10) 0 ⇒ A016
1 0 1 0 0 0 0 02

F (15) C (12) 9 ⇒ FC916
1 1 1 1 1 1 0 0 1 0 0 12

2 9 D (13) ⇒ 29D16
[0 0] 1 0 1 0 0 1 1 1 0 12



Representing Numbers in Binary: (Cont’d)
More Compact Representations (Cont’d)

To convert a hexadecimal number to its decimal equivalent, add
up the powers of sixteen multiplied by non-zero digits, e.g.,

A916 = (10× 161) + (9× 160)

= 160 + 9
= 16910

F4B16 = (15× 162) + (4× 161) + (11× 160)

= 3840 + 64 + 11
= 391510



Representing Numbers in Binary: (Cont’d)
More Compact Representations (Cont’d)

To convert a decimal number to its hexadecimal equivalent,
repeatedly divide by sixteen and read the remainder digits in
reverse (from last to first), e.g.,

Quotient Remainder
169/16⇒ 10 9
10/16⇒ 0 10 =⇒ A916

Quotient Remainder
3915/16⇒ 244 11
244/16⇒ 15 4
15/16⇒ 0 15 =⇒ F4B16



Binary Computer Memory

0100000101011000110001111

What does

mean?



Binary Computer Memory (Cont’d)

Things that binary computer memory does well:

Numbers

Text

"HELLO"

8, 5, 12, 12, 15

01000#00101#01100#01100#01111

Sounds

Pictures



Representing Text in Binary
• Associate individual symbols with unsigned binary

numbers; these symbols may not be printable but rather
instructions to I/O interface devices, e.g., control
characters.
• Original ASCII and EBCDIC standards used 7 and 8 bits to

represent 128 and 256 symbols (see Table 4.3 in textbook
for part of ASCII standard).
• Original UNICODE standard used 16 bits to represent
≈ 65,000 symbols; embedded original ASCII standard in
lowest 128 codes.
• UNICODE subsequently extended to 32 bits; can

accommodate ≈ two billion symbols.



Representing Text in Binary: ASCII



Representing Sound in Binary

• Encode periodic audio signal samples as integers.
• 40,000 samples/sec suffices for human hearing.



Representing Pictures in Binary
• Reduce picture to grid of picture elements (pixels).
• Encode pixel values as one or more integers, e.g., single

bits (B/W (see below)), 8-value gray scale (B/W), triplets of
256-value red / green / blue intensities (color).



Binary Computer Memory Redux

Things that binary computer memory doesn’t do so well:

1/3 0.33

1/3 0.33

0.331/3

0.991

Earth

Pictures

???

Detailed

Fractional Numbers

Arbitrary



. . . And If You Liked This . . .

• MUN Computer Science courses on this area:

• COMP 2003: Computer Architecture
• COMP 3731: Introduction to Scientific Computing
• COMP 4734: Matrix Computations and Applications

• MUN Computer Science professors teaching courses /
doing research in in this area:

• Sharene Bungay
• Vinicius Prado da Fonseca
• George Miminis


