
Computer Science 1000: Part #2

Algorithms and Programming

PROBLEMS, ALGORITHMS, AND PROGRAMS

PROGRAMMING IN PYTHON I: BASICS

ALGORITHMS AND PSEUDOCODE

EXAMPLE ALGORITHMS

PROGRAMMING IN PYTHON II: FUNCTIONS

. . . To Recap . . .

• The fundamental task of Computer Science is the design
and development of algorithms for solving important
problems.

• An algorithm is a well-ordered sequence of unambiguous
and effectively computable operations that produces a
result and halts in a finite amount of time.

IF WE CAN SPECIFY AN ALGORITHM
TO SOLVE A PROBLEM,

WE CAN AUTOMATE ITS SOLUTION!!!

Problems, Algorithms, and Programs

Problem

Program Algorithm

Solved BySolved By

Implemented As

(Mental)(Actual)

Problem: A set of inputs and their associated outputs.
Algorithm: A sequence of instructions that solves a problem,

i.e., computes the output for a given input.
Program: A sequence of instructions in some computer

language that solves a problem.

Example: Finding the Area of a Circle

Problem:
Input: A radius r.
Output: The area of a circle with radius r.

Algorithm:
Get the value of radius r
Set the value of area to π × r2

print area
Program:

r = int(input("r? "))
area = 3.14159 * r * r
print("Area is ", area)

Example: Summing a List

Problem:
Input: A list L of n numbers.
Output: The sum of the numbers in L.

Algorithm:
Get the values for list L and n
Set the values of INDEX to 1 and SUM to 0
While (INDEX ≤ n) do

Set the value of SUM to SUM + LINDEX
Set the value of INDEX to INDEX + 1

print the value of SUM

Example: Summing a List (Cont’d)

Program #1:
sum = 0
L = []
n = int(input("n? "))
for i in range(1, n + 1):

L.append(int(input("L-item #", \
i, "? ")))

for i in range(1, n + 1):
sum = sum + L[i]

print("Sum is ", sum)

Example: Summing a List (Cont’d)

Program #2:
sum = 0
n = int(input("n? "))
for i in range(1, n + 1):

curL = int(input("L-item #", \
i, "? "))

sum = sum + curL
print("Sum is ", sum)

Example: Finding the Maximum Value in a List

Problem #1:
Input: A list L with n elements.
Output: The largest-valued element in L.

Problem #2:
Input: A list L with n elements.
Output: The position of the largest-valued
element in L.

Problem #3:
Input: A list L with n elements.
Output: All positions at which the largest-valued
element in L occurs.

MANY POSSIBLE VARIANTS OF A PROBLEM;
MAKE SURE YOU SOLVE THE ONE YOU NEED TO.

Problems, Algorithms, and Programs:
The Big Picture

Program

Algorithm

Executable

Results

Compiler

Operating
System

Editor /

Word Processor

Compile

Code

Run

Problems, Algorithms, and Programs:
The Big Picture (Cont’d)

• In programming, there are many choices:

• There are many variants of a problem
• There are many algorithms solving a specific problem.
• There are many programs implementing a specific

algorithm.

• There is no universal best choice of algorithm and program
for a problem, but rather several more or less appropriate
choices given operational constraints, e.g., runtime /
memory efficiency, exact vs. approximate solutions.

• Figuring out both the set of possible choices and the most
appropriate of these choices for a particular situation is a
big part of both programming and Computer Science.

Programming Languages: An Overview

• A programming language is defined by the valid
statements in that language (syntax) and what those
statements do (semantics).

• A programming language can be compiled (whole
program translated into machine language) or interpreted
(individual program-statements translated as needed).

• Machine-independence achieved formally by standards,
e.g., ANSI, IEEE, and implemented in practice by
intermediate languages, e.g., bytecode.

• Machine-independence is often violated, e.g., may exploit
particular machines and/or modify language features;
additional incompatible variants may arise as language
evolves over time, e.g., Python 2.x vs. Python 3.x.

Programming Languages: An Overview (Cont’d)

Two reasons why there are many programming languages:

1. Languages are designed for different tasks, e.g.,

• Scientific computation (FORTRAN)
• Business applications (COBOL)
• Web-page creation (HTML)
• Database creation (SQL)

2. Languages are designed for different ways of thinking
about programming, e.g.,

• Procedural programming (FORTRAN, COBOL, C)
• Object-oriented programming (OOP) (C++, Java)
• Logic Programming (Prolog)
• Script-based programming (Javascript, Ruby)

The Python Programming Language: Overview
• Created by Guido van Rossum in 1991 as an easy-to-learn

general-purpose programming language.
• Procedural scripting language that allows but does not

require OOP (“as OOP as you wanna be”).
• Key design principles:

• Control structure indicated by indentation.
• Powerful built-in data types.
• Any variable can refer to any type of data, and this

type can change as a program executes.

• Primarily interpreted but can be compiled for speed.
• General machine-independence achieved by bytecode;

however, Python 3.x not directly backward-compatible with
Python 2.x.

Programming in Python I:
A First Example Program

1. # Example program; adapted from
2. # Online Python Supplement, Figure 1.2
3.
4. speed = input("Enter speed (mph): ")
5. speed = int(speed)
6. distance = input("Enter distance (miles): ")
7. distance = float(distance)
8.
9. time = distance / speed

10,
11. print("At", speed, "mph, it will take")
12. print(time, "hours to travel", \
13. distance, "miles.")

Programming in Python I:
A First Example Program (Cont’d)

• Python programs are stored in files with extension.py,
e.g., example1.py.

• When this program is executed using a Python interpreter
and the user enters the boldfaced values, this is printed:

Enter speed (mph): 58
Enter distance (miles): 657.5
At 58 mph it will take
11.3362068966 hours to travel 657.5 miles.

Programming in Python I:
A First Example Program (Cont’d)

• Line numbers not necessary; are given here to allow easy
reference to program lines.

• Lines beginning with hash (#) are comments (Lines 1-2);
a prologue comment at the top of the program gives a
program’s purpose and creation / modification history.

• Comment and blank lines (Lines 3, 8, and 10) are ignored.
• Each line is a program statement; multiline statements are

linked by end-of-line backslashes (\) (Lines 12-13).
• No variable-type declaration statements; this is handled by

assignment statements (Lines 4-7 and 9).
• This program also has basic I/O statements (Lines 4, 6,

and 11-13); control statements will be shown later.

Programming in Python I:
Assignment Statements

• General form: variable = expression, e.g.,

• index = 1
• myDistanceRate = curDistanceRate * 1.75
• name = "Todd Wareham"
• callList = ["Bob", "Sue", "Anne"]

• A variable is a stored data location that can hold a data
value, e.g., variables INDEX and NAME with values 3 and
“Todd”, respectively.:

"Todd"INDEX 3 NAME

Programming in Python I:
Assignment Statements (Cont’d)

• In Python, an assignment statement sets the value of
variable to the value of expression.

• If variable did not already exist, it is created.
• If variable did already exist, its previous value is

replaced. Note that the data-type of this previous
value need not be that created by expression.

• Variable names (also called identifiers) can be arbitrary
sequences of letters, numbers and underscore symbols (_)
such that (1) the first symbol is a letter and (2) the
sequence is not already used in the Python language.

• Python is case-sensitive wrt letter capitalization, e.g.,
myList is a different variable than mylist.

Programming in Python I:
Assignment Statements (Cont’d)

• By convention, constants use only upper-case letters and
numbers, e.g., PI, TYPE1COLOR.

• Though constants should not change value, they are
still technically variables, e.g.,

...
PI = 3.1415927
...
PI = -1
...

It is up to programmers to make sure that such
changes do not happen.

• Underscores reserved for Python system constants.

Programming in Python I:
Assignment Statements (Cont’d)

• The int and float data-types

• Encode “arbitrary” integers, e.g., -1001, 0, 57, and
floating-point numbers, e.g. -100.2, 3.1415927.

• Support basic arithmetic operations (+, -, *, /);
also have floor-division (//) and remainder (%)
operations, e.g.,

7 / 2 =⇒ 3.5
7 // 2 =⇒ 3
7 % 2 =⇒ 1

Behaviour of / incompatible with Python 2.x.
• Many additional math functions and constants

available in the math module, e.g., abs(x),
pow(base, exponent), sqrt(x), pi.

Programming in Python I:
Assignment Statements (Cont’d)

radius = input("Enter radius: ")
radius = float(radius)
area = 3.1415927 * radius * radius
print("Circle Area = ", area)

import math

radius = input("Enter radius: ")
radius = float(radius)
area = math.pi * math.pow(radius, 2)
print("Circle Area = ", area)

Programming in Python I:
Assignment Statements (Cont’d)

• The str data-type

• Encodes “arbitrary” character strings, e.g., "657.5",
"Todd Wareham".

• Supports many operations, e.g.,

• Concatenation (+) ("Todd" + " " +
"Wareham" =⇒ "Todd Wareham")

• Lower-casing ("Todd".lower() =⇒ "todd")
• Upper-casing ("Todd".upper() =⇒ "TODD")

• Convert between data types using type casting functions,
e.g., float("657.5") =⇒ 657.5, int(657.5) =⇒
657, str(58) =⇒ "58".

Programming in Python I:
Assignment Statements (Cont’d)

• The list data-type

• A list is a sequence of some number of stored data
locations, e.g., a list LM with 5 data locations:

LM

index

2 4−1 1 3

0 1 2 3 4

• Each data location in a list has its own index, and that
location is accessed using that index, e.g., LM[1] and LM[3]
have values -1 and 1, respectively.

Programming in Python I:
Assignment Statements (Cont’d)

• The list data-type (Cont’d)

• In Python, lists can encode values of arbitrary data
types, e.g., [22, 5, 13, 57, -1], ["Bob",
"Sue", "Anne"], [1, "Bob", 3].

• Supports many operations, e.g.,

• Number of values in list (len(L))
• Append x to right end of list (L.append(x))
• List sorting (L.sort())
• Get list maximum value (max(L))

Programming in Python I:
I/O Statements

• Keyboard input done via input(string).
• Prints string on screen, waits for user to enter input

followed by a key return, and then returns this input-string.
• Input-string can be converted as necessary by type-casting

functions, e.g., float(radius).

• Screen output done via print(plist).
• Comma-separated items in plist converted to strings as

necessary and concatenated, and resulting string printed.
• By default, each print-statement prints one line; can

override this by making end = " ") the last item.
• Can include escape characters to modify printout, e.g.,
\t (tab), \n (newline),

• Above I/O incompatible with Python 2.x.

Programming in Python I:
I/O Statements (Cont’d)

The statements

print("Here is \t a weird")
print("way \n of printing ", end = " ")
print("this message.")

print(out)

Here is a weird
way
of printing this message.

Programming in Python I:
A First Example Program Redux

1. # Example program; adapted from
2. # Online Python Supplement, Figure 1.2
3.
4. speed = input("Enter speed (mph): ")
5. speed = int(speed)
6. distance = input("Enter distance (miles): ")
7. distance = float(distance)
8.
9. time = distance / speed

10,
11. print("At", speed, "mph, it will take")
12. print(time, "hours to travel", \
13. distance, "miles.")

Programming in Python I:
Control Statements

• Sequential Statements (Statement Block):

• A set of statements with the same indentation.
• All Python programs seen so far are purely sequential.

• Conditional Statements:

• General form:
if (CONDITION1):

〈 CONDITION1 Block〉
elif (CONDITION2):

〈 CONDITION2 Block〉
...

else:
〈 ELSE Block〉

• elif and else blocks are optional.

Programming in Python I:
Control Statements (Cont’d)

Conditions typically based on variable-comparisons, possibly
connected together by logical operators.

x == y x equal to y
x != y x not equal to y
x < y x less than y
x <= y x less than or equal to y
x > y x greater than y
x >= y x greater than or equal to y

E1 and E2 logical AND of E1 and E2
E1 or E2 logical OR of E1 and E2
not E1 logical NOT of E1

Programming in Python I:
Control Statements (Cont’d)

if ((number % 2) == 0):
print("number is even")

if ((number >= 1) and (number <= 10)):
print("number in range")

if (1 <= number <= 10):
print("number in range")

if not (1 <= number <= 10):
print("number not in range")

Programming in Python I:
Control Statements (Cont’d)

if ((number % 2) == 0):
print("number is even")

else:
print("number is odd")

if (number < 10):
print("number less than 10")

elif (number == 10):
print("number equal to 10")

else:
print("number greater than 10")

Programming in Python I:
Control Statements (Cont’d)

• Conditional Looping Statement:

• General form:
while (CONDITION):
〈 Loop Block 〉

• Executes Loop Block as long as CONDITION is True.

• Iterated Looping Statement:

• General form:
for x in LIST:
〈 Loop Block 〉

• Executes Loop Block for each item x in LIST.

Programming in Python I:
Control Statements (Cont’d)

Print the numbers between 1 and 100 inclusive:

number = 1
while (number <= 100):

print(number)
number = number + 1

for number in range(1, 101):
print(number)

Programming in Python I:
Control Statements (Cont’d)

Sum the numbers in a −1-terminated list:

sum = 0
number = int(input("Enter number: "))
while (number != -1):

sum = num + number
number = int(input("Enter number: "))

print("Sum is ", sum)

Programming in Python I:
Control Statements (Cont’d)

Find the maximum value in a −1-terminated list:

maxValue = -99
number = int(input("Enter number: "))
while (number != -1):

if (number > maxValue):
maxValue = number

number = int(input("Enter number: "))
print("Maximum value is ", maxValue)

Programming in Python I:
Control Statements (Cont’d)

Store the values in a −1-terminated list in L:

L = []
number = int(input("Enter number: "))
while (number != -1):

L.append(number)
number = int(input("Enter number: "))

Print the values in list L (one per line):

for number in L:
print(number)

Algorithms and Pseudocode

• Natural language not precise enough to express
algorithms as it often relies on context and background
knowledge; programming languages too precise for
abstract thinking needed during algorithm development.

• Pseudocode = programming-language-like statement of
algorithm that does not run on a computer.

• No standard way of writing pseudocode – anything goes,
as long as the result satisfies the definition of an algorithm.

• In our pseudocode, we will have variables and lists as in
Python; however, in accordance with our textbook, lists will
start at index 1 rather than 0 and list-location indices will be
denoted by subscripts, e.g., LM2, LMINDEX.

Algorithms and Pseudocode:
Sequential Operations

Assignment: Set the value of a variable to something, e.g.,

Set the value of INDEX to INDEX + 1
Add 1 to INDEX
INDEX = INDEX + 1

Input: Get variable values from the outside world, e.g.,

Get the values for X and list L
Read in the values for X and list L

Output: Send some message (such as computed variable
values) to the outside world, e.g.,

Print the value of SUM
Print the message "not found"
Return the value of SUM

Algorithms and Pseudocode:
Conditional Operations

IF-THEN: Do something if some condition is true, e.g.,

if (LINDEX is X) then
Set the value of FOUND to "YES"
Print the message "found"

IF-THEN-ELSE: Do first thing if some condition is true and if
not do second thing, e.g.,

if (LINDEX is X) then
Set the value of FOUND to "YES"
Print the message "found"

else
Set the value of INDEX to INDEX + 1

Algorithms and Pseudocode:
Conditional Operations (Cont’d)

Multiple IF-THEN-ELSE: Do something depending on which of
a set of conditions is true and if none of the
conditions are true do something else, e.g.,

if (LINDEX is "apple" or "orange") then
NUMFRUIT = NUMFRUIT + 1

else if (LINDEX is "potato") then
NUMVEG = NUMVEG + 1

else if (LINDEX is "thyme") then
NUMHERB = NUMHERB + 1

else
print "unrecognized produce item"

Algorithms and Pseudocode:
Iterative Operations

Conditional Iteration: Repeat something as long as a condition
is true, e.g.,

Set the values of INDEX to 1 and SUM to 0
while (INDEX ≤ n) do

Set the value of SUM to SUM + LINDEX
Set the value of INDEX to INDEX + 1

Counted Iteration: Repeat something as long as a condition is
true, e.g.,

Set the value of SUM to 0
for INDEX = 1 to n do

Set the value of SUM to SUM + LINDEX

Example Algorithms:
Overview

• Every algorithm has at least one underlying intuition which
is subsequently refined into an algorithm proper.

• Let’s look at how some classic algorithms are derived from
their underlying intuitions.

• These algorithms are for the following problems:

1. List Search
2. List Maximum Value
3. List Sorting
4. Bin Packing

The List Search Problem

LIST SEARCH

Input: A list L with n elements and a value X.
Output: The position of the element with value X in L if such
an element exists and -1 otherwise.

• Has many applications, e.g., looking up a person’s
telephone number, charging some amount to a credit card,
finding out if anyone won the Lotto Max jackpot this week.

• For simplicity, assume X and all list-elements are numbers;
however, our algorithms work for any values that can be
ordered, e.g., words, names.

Sequential List Search:
Intuition

“Well, if I don’t know anything else about the list
except that it has n elements, I suppose I’ll have
to look at each element in the list and see if it
is equal to the target-value. If I find such an el-
ement, I can stop and save that element’s posi-
tion; otherwise, I return -1 after I’ve looked at all
elements in the list. Sounds like a lot of work.
Bummer.”

Sequential List Search:
Algorithm (Version 0)

Get values for X, list L, and n
Set the value of INDEX to 1 and FOUND to "NO"
While (FOUND is "NO") and (INDEX ≤ n) do

If LINDEX is X then
Set the value of FOUND to "YES"
Print the message “found”

Else
Set the value of INDEX to INDEX + 1

If (FOUND is "NO") then
Print the message “not found”

Sequential List Search:
Algorithm (Version 1)

Get values for X, list L, and n
Set the value of FOUNDPOS to -1 and INDEX to 1
while (FOUNDPOS is -1) and (INDEX ≤ n) do

if (LINDEX is X) then
Set the value of FOUNDPOS to INDEX

else
Set the value of INDEX to INDEX + 1

return FOUNDPOS

Sequential List Search:
Algorithm (Version 2)

Get values for X, list L, and n
FOUNDPOS = -1
INDEX = 1
while (FOUNDPOS is -1) and (INDEX ≤ n) do

if (LINDEX is X) then
FOUNDPOS = INDEX

else
INDEX = INDEX + 1

return FOUNDPOS

Binary List Search:
Intuition

“Hmmm ... Suppose this time I know L is sorted.
Whenever I look at LINDEX where INDEX is the
middle of the list and LINDEX is not equal to
the target-value, as L is sorted, I know that
the target-value must be either above or below
INDEX in the list (depending on whether the
target-value is greater or less than LINDEX). I
can keep repeating this in a loop until I either
find the target-value or run out of list to search.
This should finish way faster because each time
I halve the size of the list I’m looking at. Cool!”

Binary List Search:
Algorithm (Version 0)

Get values for X, list L, and n
Set the current list to all of L
while we haven’t found X in list L and
there’s still a current list to search do

if X isn’t the middle element of the current list then
if X > middle element then

set current list to upper part of current list
else

set current list to lower part of current list

Binary List Search:
Algorithm (Version 1)

Get values for X, list L, and n
FOUNDPOS = -1
LEFT = 1
RIGHT = n
while (FOUNDPOS is -1) and (LEFT ≤ RIGHT) do

FOUNDPOS = (LEFT + RIGHT) / 2
if (LFOUNDPOS is not equal to X) then

if (X > LFOUNDPOS) then
LEFT = FOUNDPOS + 1

else
RIGHT = FOUNDPOS - 1

FOUNDPOS = -1
return FOUNDPOS

The List Maximum Value Problem

LIST MAXIMUM VALUE

Input: A list L with n elements.
Output: The position of the largest-valued element in L.

• Has many applications, e.g., looking for the employer that
pays the highest salary for a particular job; is also a useful
building block in more complex algorithms, e.g., list sorting.

• For simplicity, assume all list-elements are numbers;
however, our algorithm work for any values that can be
ordered, e.g., words, names.

• Can be readily adapted to find smallest list values.

List Maximum Search:
Intuition

“Well, if I don’t know anything else about the
list except that it has n elements, I suppose I’ll
have to look at each element in the list and keep
track as I go of which element is the largest I’ve
found so far. After I’ve gone through this list, the
largest I found by then is the largest in the list.
Again, sounds like a lot of work. Bummer.”

List Maximum Search:
Algorithm (Version 0)

Get values for list L and n
Set the values of LARGEST to L1, FOUNDPOS to 1, and

INDEX to 2
While (INDEX ≤ n) do

If LINDEX > LARGEST then
Set the value of LARGEST to LINDEX
Set the value of FOUNDPOS to INDEX

Set the value of INDEX to INDEX + 1
Print the value of FOUNDPOS

List Maximum Search:
Algorithm (Version 1)

Get values for list L and n
FOUNDPOS = 1
INDEX = 2
while (INDEX ≤ n) do

if LINDEX > LFOUNDPOS then
FOUNDPOS = INDEX

INDEX = INDEX + 1
return FOUNDPOS

List Maximum Search:
Algorithm (Version 2)

Get values for list L and n
FOUNDPOS = 1
for INDEX = 2 to n do

If LINDEX > LFOUNDPOS then
FOUNDPOS = INDEX

return FOUNDPOS

The List Sorting Problem

LIST SORTING

Input: A list L with n elements.
Output: The version of L sorted in ascending value order.

• Has many applications, e.g., generating lists of employees
by name or salary; also enables algorithms that require
sorted list, e,g„ binary list search.

• For simplicity, assume all list-elements are numbers;
however, our algorithms work for any values that can be
ordered, e.g., words, names.

• Can be readily adapted to sort in descending value order.

Selection Sort:
Intuition

“The last element in a sorted list is the largest
in the list, the second-last element is the largest
among the remaining elements in the list, and so
on. Perhaps we could use a find-list-maximum
algorithm in a loop!”

Selection Sort:
Algorithm (Version 0)

Get values for list L and n
Set the marker for the unsorted section at the end of L
While the unsorted section is not empty do

Find largest element in unsorted section of list
Swap this largest element with the last element in

the unsorted part of the list
Move the marker for the unsorted section left

one position

Selection Sort:
Algorithm (Version 1)

Get values for list L and n
ENDUNSORTED = n
While (ENDUNSORTED > 1) do

FOUNDPOS = 1
for INDEX = 2 to ENDUNSORTED do

If LINDEX > LFOUNDPOS then
FOUNDPOS = INDEX

TMP = LENDUNSORTED
LENDUNSORTED = LFOUNDPOS
LFOUNDPOS = TMP
ENDUNSORTED = ENDUNSORTED - 1

Selection Sort:
Algorithm (Version 2)

Get values for list L and n
for ENDUNSORTED = n downto 2 do

FOUNDPOS = 1
for INDEX = 2 to ENDUNSORTED do

If LINDEX > LFOUNDPOS then
FOUNDPOS = INDEX

TMP = LENDUNSORTED
LENDUNSORTED = LFOUNDPOS
LFOUNDPOS = TMP

Bubble Sort:
Intuition

“In order for a list to be unsorted, there must
be at least one pair of adjacent list-elements
LINDEX and LINDEX+1 such that LINDEX > LINDEX+1.
Suppose we kept going through the list, swap-
ping bad adjacent list-element pairs until there
weren’t any more such pairs?”

Bubble Sort:
Algorithm (Version 0)

Get values of list L
while list is not sorted do

traverse L, swapping bad adjacent list-element pairs
as necessary

if no swaps occurred then
the list is sorted

Bubble Sort:
Algorithm (Version 1)

Get values of list L and n
SORTED = "NO"
while (SORTED is "NO") do

NUMSWAP = 0
for INDEX = 2 to n do

if (LINDEX−1 > LINDEX) then
TMP = LINDEX−1
LINDEX−1 = LINDEX
LINDEX = TMP
NUMSWAP = NUMSWAP + 1

if (NUMSWAP is 0) then
SORTED = "YES"

Bubble Sort:
Algorithm (Version 2)

Get values of list L and n
SORTED = "NO"
while (SORTED is "NO") do

SORTED = "YES"
for INDEX = 2 to n do

if (LINDEX−1 > LINDEX) then
TMP = LINDEX−1
LINDEX−1 = LINDEX
LINDEX = TMP
SORTED = "NO"

The Bin Packing Problem

BIN PACKING

Input: A bin size B and a list L of n item sizes, each ≤ B.
Output: The smallest number of bins of size B that can hold
all of the items in L.

• Has many applications, e.g., minimizing order packaging
for online retailers.

• Has a set of candidate solutions (packings of the items of L
into bins), each with their own cost (number of bins in a
packing), and requires a candidate solution that optimizes
that cost; hence, this is an optimization problem.

Bin Packing:
Intuitions

Intuition #1: “If I have at most n items, I’ll need
at most n bins. How about I try all possible ways
of dividing the items in L among n or less bins,
and then check each packing to make sure that
no bin has items that are too big for that bin?”

Intuition #2: “Intuition #1 sounds way too hard.
How about I just do it like Doug at Sobey’s – take
each item in L in turn and add it to the current
bin, and if that item is too large, make a new bin
and add it to that one?”

Assessing Algorithm Efficiency (Take I)
How many list-item comparisons (as a function of list-length n)
do each of these algorithms require in the best and worst case?

Algorithm Best Worst
Sequential List Search 1 n
Binary List Search 1 log2 n
List Maximum Search n n
Selection Sort ≈ n2 ≈ n2

Bubble Sort n− 1 ≈ n2

Given one wants to do m searches in a list of length n, for what
values of m does it make sense to sort a list?

Does this change if we know that a given list is almost sorted,
e.g., has k << n unsorted items at the front of the list?

Programming in Python II: Functions

• Compartmentalize data, tasks, and algorithms in programs
with functions; allow implementation of divide-and-
conquer-style programming.

• General form:

def funcName():
〈 Function Block 〉

def funcName(parameterList):
〈 Function Block 〉

def funcName(parameterList):
〈 Function Block 〉
return value

Programming in Python II: Functions (Cont’d)

• A variable defined inside a function is a local variable;
otherwise, it is a global variable.

• If a local variable has the same name as a global variable,
the local variable is used inside the function.

• What does this print?

def myFunc1():
one = -1
print(one, two)

one = 1
two = 2
print(one, two)
myFunc1()
print(one, two)

Programming in Python II: Functions (Cont’d)
• The parameters in a function’s parameter-list match up

with and get their values from the arguments in the
argument-list of a function call in numerical order, not by
parameter / argument name.

• What does this print?

def myFunc2(one, two, three):
print(one, two, three)

one = 1
two = 2
three = 3
print(one, two, three)
myFunc2(two, three, one)
print(one, two, three)

Programming in Python II: Functions (Cont’d)

• The value returned by a function can be captured by an
assignment statement which has that function as the
expression.

• What does this print?

def myFunc3(one, two, three):
sum = (one + two) - three
return sum

one = 1
two = 2
three = 3
result = myFunc3(two, three, one)
print(result)

Programming in Python II: Functions (Cont’d)

• Eliminate global variables with main functions.
• What does this print?

def myFunc4(one, two, three):
sum = (one + two) - three
return sum

def main():
one = 1
two = 2
three = 3
result = myFunc4(two, three, one)
print(result)

main()

Programming in Python II: Functions (Cont’d)

Functions useful in all stages of software development:

1. Planning (View complex problem as set of simple
subtasks)

2. Coding (Code individual subtasks independently)
3. Testing (Test individual subtasks independently)
4. Modifying (Restrict changes to individual subtasks)
5. Reading (Understand complex problem as set of simple

subtasks)

Programming in Python II: Functions (Cont’d)

Reading in and printing a −1-terminated list (Version #1):

L = []
number = int(input("Enter number: "))
while (number != -1):

L.append(number)
number = int(input("Enter number: "))

for number in L:
print(number)

Programming in Python II: Functions (Cont’d)

Reading in and printing a −1-terminated list (Version #2):

def readList():
L = []
number = int(input("Enter number: "))
while (number != -1):

L.append(number)
number = int(input("Enter number: "))

def printList():
for number in L:

print(number)

readList()
printList()

Programming in Python II: Functions (Cont’d)

Reading in and printing a −1-terminated list (Version #3):

def readList():
number = int(input("Enter number: "))
while (number != -1):

L.append(number)
number = int(input("Enter number: "))

def printList():
for number in L:

print(number)

L = []
readList()
printList()

Programming in Python II: Functions (Cont’d)

Reading in and printing a −1-terminated list (Version #4):

def readList():
L = []
number = int(input("Enter number: "))
while (number != -1):

L.append(number)
number = int(input("Enter number: "))

return L

def printList(L):
for number in L:

print(number)

L = readList()
printList(L)

Programming in Python II: Functions (Cont’d)

def readList():
L = []
number = int(input("Enter number: "))
while (number != -1):

L.append(number)
number = int(input("Enter number: "))

return L

def printList(L):
for number in L:

print(number)

def main():
L = readList()
printList(L)

main()

Programming in Python II: Functions (Cont’d)

Sort the values in list L (Selection Sort) (Function Version #1):

def sortList(L):
endUnSort = len(L) - 1
while (endUnSort > 0):

maxPos = 0
for ind in range(1, endUnSort + 1):

if (L[ind] > L[maxPos]):
maxPos = ind

tmp = L[endUnSort]
L[endUnSort] = L[maxPos]
L[maxPos] = tmp
endUnSort = endUnSort - 1

return L

Programming in Python II: Functions (Cont’d)

Sort the values in list L (Selection Sort) (Function Version #2):

def sortList(L):
endUnSort = len(L) - 1
while (endUnSort > 0):

maxPos = getListMaxPos(L, endUnSort)
swap(L, maxPos, endUnsort)
endUnSort = endUnSort - 1

return L

Programming in Python II: Functions (Cont’d)

Compute unique values in sorted list L (Function):

def getUniqueList(L):
LUnique = []
curValue = L[0]
for ind in range(1, len(L)):

if (L[ind] != curValue):
LUnique.append(curValue)
curValue = L[ind]

LUnique.append(curValue)
return LUnique

Programming in Python II: Functions (Cont’d)

Main function for unique-value list program:

def main():
L = readList()
L = sortList(L)
L = getUniqueList(L)
printList(L)

Implementing Programming: The Software Crisis

• Act of programming
made easier by
compilers, languages,
and operating systems;
problem of developing
algorithms remained.

• Special notations like
flowcharts help with
small- and medium-size
programs; hope was
that appropriate
management would
help with large ones.

Implementing Programming:
The Software Crisis (Cont’d)

The SABRE Airline Reservation System (1964)

Implementing Programming:
The Software Crisis (Cont’d)

IBM System/360 (1967)

Implementing Programming:
The Software Crisis (Cont’d)

Fred Brooks Jr.
(1931–)

• OS/360 initially planned for 1965 costing $125M; limped to
market in 1967 costing $500M, and virtually destroyed
IBM’s in-house programming division.

• Brooks discussed causes in The Mythical Man Month.

Implementing Programming:
The Software Crisis (Cont’d)

Implementing Programming:
The Software Crisis (Cont’d)

As both larger programs and larger teams have more complex
internal relationships, adding more programmers to larger
projects makes things worse.

Implementing Programming:
The Software Crisis (Cont’d)

• Software Engineering born at 1968 NATO-sponsored
conference; goal of SE is to develop efficient processes for
creating and maintaining correct software systems.

• Many types of processes proposed, e.g., design and
management methodologies (Agile), automatic software
derivation methods; however, “No Silver Bullet” (Brooks).

. . . And If You Liked This . . .
• MUN Computer Science courses on this area:

• COMP 1001: Introduction to Programming
• COMP 2001: Object-oriented Programming and HCI
• COMP 2002: Data Structures and Algorithms
• COMP 2005: Software Engineering

• MUN Computer Science professors teaching courses /
doing research in in this area:

• Ed Brown
• Rod Byrne
• Adrian Fiech
• Antonina Kolokolova
• Manrique Mata-Montero

