Enrichment Mini-Course Notes:

Inside Computer Programming

Todd Wareham

Department of Computer Science
Memorial University of Newfoundland
harold@cs.mun.ca

May 3-4, 2004

Table of Contents

Problems, Algorithms, and Programs i, 2
Problems 3
Algorithms ... 4-9
The Searching Problem 10 - 16
The Sorting Problem 17 - 29
Solving Problems with Programs 30 — 36
Graph Problems 37 — 41

ConClUSIONS .« . oot 42

2

Problems, Algorithms, and Programs

Problem

Solved By,/ \\Solved By

Program - Algorithm

Implemented As

e A problem is a set of inputs with a set of associated
outputs. Each input has one associated output.

e An algorithm is a sequence of instructions that solves
a given problem, i.e.. given an input, the algorithm
computes the corresponding output.

e A program is a sequence of instructions in some
computer language, e.q., FORTRAN, C, Java, that
solves a given problem.

e A problem may have many algorithms; an algorithm
may be implemented as many programs;
each program implements one algorithm.

Given a problem, which algorithm for that problem
should we choose to implement in a program?

Problems

e Example Problem #1:

“Given the radius of a circle, what is that circle’s
area’”

4

Input: A radius r.
Output: The area of a circle with radius r.

e Example Problem #2:

“If I know the grade a student is in, what type of
school are they in?”

4

Input: A student grade-number g.
Output: The type of school with students of
grade-number g.

e Example Problem #3:

“I have a list of numbers and I'd like to know what
they add up to.”

4

Input: A list L of numbers.
Output: The sum of all numbers in L

Algorithms:
Basic Parts

e Algorithm = data + instructions

e The most basic types of data are single-value pieces of data
(variables) or multiple-value indexed lists of data (lists).

— Each variable or list has a name.

— The ith element of list L has the name Ll[i].
e There are three basic types of instructions:

1. Assignment
something = something else
2. Conditional (if-then-else)

IF (something is true) THEN
do this

ELSE
do that

3. Loop

(a) Conditional Loop
WHILE (something is true) DO
this
(b) Counted Loop

FOR some number of times DO
this

Algorithms:
Finding the Area of a Circle

Intuition:
“I know that the area of a circle with radius r is given
by the expression 7 x 72, where m = 3.14159.”

Algorithm:

area = 3.14159 x r x r
return(area)

Algorithms:
Determining your School Type

Intuition:
“Let’s see ... If someone is in Grades 1 to 6, they are
in elementary school. If they are in grades 7 to 9, they
are in junior high school. Otherwise, they are in high
school.”

Algorithm:

if ((g >= 1) and (g <= 6)) then
school_type = "elementary"

else if ((g >= 7) and (g <= 9)) then
school_type = "junior high"

else if ((g >= 10) and (g <= 12)) then
school_type = "high"

else
school_type = "invalid"

return(school_type)

Algorithms:
Summing a List of Numbers
(Number of List Elements Specified)

Intuition:

“How about I start with some sum-variable set to O,

and I go through the list and add each list-element to
the sum-variable?”

Algorithm:
sum = 0
for 1 = 1 to n do
sum = sum + L[i]

return (sum)

Algorithms:
Summing a List of Numbers
(End of List Specified by -1-Value)

Intuition:
“Ohhhkaaaayyyy ...Once again, I start with some
variable set to 0. However, this time, I'll go through
the list and add each element to the sum-variable until
[hit an element with value -1. This means I'll have
to check each element before I add it to the sum-
variable.”

Algorithm:

sum = O

1 =1

while (L[i] != -1) do
sum = sum + L[i]
1 =1+1

return(sum)

Algorithms:
Finding the Smallest Element
in a List

Problem:
Input: A list L with n elements.
Output: The position of the smallest element in L.

Intuition:

“If I don’'t know anything else about the list except
that it has n elements, I suppose I'll have to look at
all of the list-elements and keep track of the position
of the smallest one I've seen so far (I can use that to
get the value whenever I need it). When I've looked
at the whole list, the smallest element I've found so
far is the smallest element in the list.”

Algorithm:

min_pos = 1
for 1 = 2 to n do
if (L[i] < L[min_pos]) then
min_pos = 1
return(min_pos)

10

The Searching Problem

e The problem of finding if some value is included in a
given list occurs in lots of applications, e.g.,

— looking up a person’s telephone number
— charging some amount to a person’s credit card

— finding out if anyone won the Lotto 6-49 jackpot
this week

LIST SEARCH
Input: A (unsorted/sorted) list L with n elements,

a target-value ¢.
Output: The position of the element with value ¢ in

L if such an element exists and -1 otherwise.

e We will assume both list-elements and ¢ are numbers
for the sake of simplicity; however, our algorithms will
work for any values that can be ordered, e.g., charac-

ter strings.

11

Unsorted-List Search Algorithms:
Linear Search

Intuition:

“Well, if T don’t know anything else about the list
except that it has n elements, I suppose I'll have to
look at each element in the list and see if it is equal to
the target-value. If I find such an element, I can stop
and return that element’s position; otherwise, I return
-1 after I've look at all elements in the list. Sounds
like a lot of work. Bummer.”

Algorithm:
t_pos = -1
1 =1
while ((i <= n) and (t_pos == -1)) do
if (L[i] == t) then

t_pos = 1
1i=1+1
return(t_pos)

12

Sorted-List Search Algorithms:
Binary Search

Intuition:

“Hmmm ... Whenever I look at L|i] where 7 is the
middle of the list and L[i]’s not equal to the target-
value, as L is sorted, I know that the target-value must
be either above or below ¢ in the list (depending on
whether the target-value is greater or less than L[i]).
I can keep repeating this in a loop until I either find
the target-value or run out of list to search. Cool!”

Algorithm (Version #1):

set the current list to L
while we haven’t found t in the list
and there’s still a current list
to search do
if t isin’t the middle element of
the current list then
1f t > middle element then
set current list to upper
part of current list
else
set current list to lower
part of current list

Sorted-List Search Algorithms:

Binary Search (Cont’d)

Algorithm (Version #2):

t_pos = -1

left =1

right = n

while ((t_pos == -1) and

(left <= right)) do
t_pos = (left + right) / 2
if (L[t_pos] != t) then
if (t > L[t_pos]) then
left = t_pos + 1
else
right = t_pos - 1
t_pos = -1
return(t_pos)

13

14

Time Complexity:
What Is It?

e There are typically many algorithms for solving a
particular problem. Which one do we use?

= Use the simplest algorithm, i.e., the algorithm that
is easiest to understand and hence most likely to
be implemented correctly in a program.

= Use the most efficient algorithm, 1.e.,
the algorithm that requires the least amount of
computer time to solve the problem!

e As inputs may vary in size and an algorithm may
require different amounts of time to compute on
different inputs, measures of algorithm efficiency should
be phrased relative input size.

e The (worst-case) time complexity of an
algorithm is a function O(f(n)) of input size n that
upper-bounds the amount of time required by that
algorithm to solve its associated problem relative to
an input of size n.

e By making appropriate abstractions, can make time
complexity describe the running time of an algorithm
relative to any possible computer.

15

Search Algorithms:
Time Complexity

e You can get a rough estimate of worst-case time
complexity by multiplying out the number of times
each loop in the algorithm will execute in the worst
case.

e For search algorithms, let the input size be n, the
number of elements in the given list:

— Linear Search: O(n) time

— Binary Search: O(log,n) time
e Where did this function log, n come from?

— logy m is the logarithm (base 2) of n.

— logy n is essentially the number of times you can
divide n by 2 until you get a result that is less
than or equal to one, e.g., logs 4 = 2, logy 7 = 3,
logs 16 = 4.

— As binary search discards half of the given list each
time we iterate the main loop, this loop can iterate
at most log, n times!

16

Search Algorithms:
Time Complexity (Cont’d)

e Suppose you have a computer that executes a million
instructions per second:

Time Complexity
Input B-Search | L-Search
Size (n) (log, n) (n)
10 .000003 .00001
second second
20 .000004 .00002
second second
30 .000005 .00003
second second
50 .000006 .00005
second second
100 .000007 .0001
second second
1000 .000010 .001
second second
10000 .000013 .01
second second
one .000020 1
million second second
300 .000028 5
million second minutes
five .000032 1.38
billion second hours

e Binary search much faster than linear search!

e Are there efficient algorithms for sorting lists?

17

The Sorting Problem

e The problem of sorting a given list occurs whenever
you want to set a list up for fast search. It can also
have other uses, e.q., detecting duplicate values.

LIST SORT
Input: A list L with n elements.
Output: The sorted version of L.

e As with the Ilist search problem, we will
assume list-elements are numbers for the sake of
simplicity; however, our algorithms will work for any
values that can be ordered, e.g., character strings.

18

Sorting Algorithms:
Selection Sort

Intuition:
“The first element in a sorted list is the smallest in
the list, the second element is the smallest among the
remaining elements in the list, and so on. Perhaps we
could use our find-list-minimum algorithm in a loop!”

Algorithm (Version #1):

for 1 =1 ton -1 do
find minimum element in L[i .. n]
swap minimum element and element 1

Algorithm (Version #2):

for 1 =1 ton -1 do
min_pos = 1
for scan = 1 + 1 to n do
if (L[scan] < L[min_pos]) then
min_pos = scan
temp = L[min_pos]
L[min_pos] = L[i]
L[i] = temp

19

Sorting Algorithms:
Insertion Sort

Intuition:
“Suppose the first © — 1 elements of L are sorted

already; to add Lli] to this sorted list, all I need to do
is shift elements of L|1..(¢ —1)] upwards until the spot
where L|i| fits is open. Say, I can loop this operation
as well to add each element in L|2..n| successively to
the trivially sorted list L[1..1]! Sweet!”

Algorithm (Version #1):
for 1 = 2 to n do
shift elements of L[1 .. (i - 1)]
upwards until L[i]’s spot is open
copy L[i] into open spot
Algorithm (Version #2):
for 1 = 2 to n do
val = L[i]
new_pos = 1
while ((new_pos > 1) and
(L[new_pos - 1] > val)) do
L[new_pos] = L[new_pos - 1]
new_pos = new_pos - 1
L[new_pos] = val

20

Sorting Algorithms:
Bubble Sort

Intuition:
“In order for a list to be unsorted, there must be at
least one pair of adjacent list-elements L[| and L{i+1]
such that L[i] > L[i + 1]. Suppose we kept going
through the list, swapping bad adjacent list-element
pairs until there weren’t any more such pairs?”

Algorithm (Version #1):

while list is not sorted do
traverse L, swapping bad adjacent
list-element pairs as necessary
1f no swaps occurred then
the list 1s sorted

21

Sorting Algorithms:
Bubble Sort (Cont’d)

Algorithm (Version #2):

sorted = false
while (not sorted) do
num_swap = 0
for 1 = 2 to n do
if (L[1i - 1] > L[i]) then
temp = L[i - 1]
L[i - 1] = L[i]

L[i] = temp
num_swap = num_swap + 1
if (num_swap == 0) then sorted = true

Algorithm (Version #3):

sorted = false
while (not sorted) do
sorted = true
for 1 = 2 to n do
if (L[i - 1] > L[i]) then
temp = L[i - 1]
L[i - 1] = L[i]
L[i] = temp
sorted = false

22

Sorting Algorithms:
Time Complexity

Selection Sort:
e Outer loop always executes n — 1 times.

e Inner loop executes O(n) times, regardless of how
sorted the input list is = O(n?) time.

e In practice, has lowest worst-case running time.

Insertion Sort:
e Outer loop always executes n — 1 times.

e In the worst case (list sorted in reverse order), the
inner loop executes O(n) times = O(n?) time.

e In practice, has lowest average-case running time.

Bubble Sort:

e Inner loop always executes n — 1 times.

e In the worst case (list sorted in reverse order), the
outer loop executes O(n) times = O(n?) time.

e In practice, has lowest best-case running time.

23

Sorting Algorithms:
Time Complexity (Cont’d)

e Once again, on our megaflop computer . ..

Time Complexity
Input || B-Search | L-Search | S/I/B-Sort
Size (n) || (logyn) (n) (n?)
10 .000003 .00001 .0001
second second second
20 .000004 .00002 .0004
second second second
30 .000005 .00003 .0009
second second second
50 .000006 .00005 .0025
second second second
100 .000007 .0001 .01
second second second
1000 .000010 .001 1
second second second
10000 .000013 .01 1.67
second second minutes
one .000020 1 11.57
million second second days
300 .000028 5) 3
million second minutes centuries
five .000032 1.38 7927
billion second hours centuries

e The worst-case running time won'’t occur that often,

so this isin’t as bad as it seems. That being said,
is there a sorting algorithm with a better worst-case
running time? How about for restricted cases of the
sorting problem?

24

Sorting Algorithms:
Merge Sort

Intuition:

“You can sort a list L by separately sorting the top
and bottom halves of the list and then merging these
lists together to create a full sorted list. How do you
sort each of the half-lists? Do the same thing on each
half-list! You can keep splitting lists in this fashion
until you have lists of length one, which are trivially
sorted. Then you can backtrack and do the merging.
Sounds bizarre, but it should work ...”

Algorithm (Version #1):

MergeSort(L,ls,1f)
1f there i1s more than one element
1in the current sublist then
sort the bottom half of list L
sort the top half of list L
merge the top and bottom half
sorted sublists

where 1s (1f) is the start (final) index of the current
sublist being sorted.

Sorting Algorithms:
Merge Sort

Algorithm (Version #2):
MergeSort(L, 1s, 1f)
if (1s < 1f) then
1m = FLOOR((1s + 1r) / 2)
MergeSort(L,1ls,1lm)
MergeSort(L,1m,1f)
Merge(L,1ls,1m,1f)

Merge(L,1ls,1m,1f)

nb = (Im - 1s) + 1
nt (1f - Im) + 1
Create arrays BH and TH
for 1 = 1 to nb do

BH[i] = L[1s + (i - 1)]
for 1 = 1 to nt do

TH[i] = L[1m + (i - 1)]
BH[nb + 1] = INFINITY
TH[nt + 1] = INFINITY

1i=3=1
for k = 1s to 1f do
if (BH[i] <= TH[j]) then
L[k] = BH[i]
i=1+1
else
L[k] = TH[j]

j=gt

26

Sorting Algorithms:
Count Sort

Intuition:

“All these general-purpose algorithms are very nice.
However, suppose all list-elements in L are positive
integers and the maximum-value max in L is small?
I could simply go through L once and count how many
times elements of each value show up. All I have to do
then is go through my count-list and print out each
value the number of times it appears in L!”

Algorithm (Version #1):

Create array C of length max
Initialize all entries of C to zero
for each element L[i] in L do
Increment C[L[i]] by one
for each element C[i] in C do
if C[i] > O then
Put C[i] copies of i in L

Sorting Algorithms:

Count Sort

Algorithm (Version #2):

for 1 = 1 to max do
Clil = 0
for 1 =1 to n do
C[1[i]l] = C[L[il] + 1
pos =1
for 1 = 1 to max do
for j =1 to C[i] do
Llpos] =1
pos = pos + 1

27

28

Sorting Algorithms Redux:
Time Complexity

Merge Sort:

e Merge Sort is a recursive algorithm, i.e.,
an algorithm that calls itself.

e The time complexities of recursive algorithms are

described by special equations called recurrences.

The recurrence for the time complexity of Merge
Sort is as follows:

] O(1) n=1
T(n) = 2T (n/2)+O(n) n > 1
By math we will not go into here, this recurrence
yields the time complexity O(nlog,n).
Count Sort:

e Has loops that execute m and max times =
O(n + mazx) time.

e [s only practical if max is small.

29

Sorting Algorithms Redux:
Time Complexity (Cont’d)

e Once again, on our megaflop computer . ..

Time Complexity
L-Search,
Input || B-Search | C-Sort | M-Sort | S/I/B-Sort
Size (n) || (logyn) (n) (nlogyn) (n?)
10 .000003 .00001 .00003 .0001
second second second second
20 .000004 .00002 .00008 .0004
second second second second
30 .000005 .00003 .0001 .0009
second second second second
50 .000006 .00005 .0003 .0025
second second second second
100 .000007 .0001 .0007 .01
second second second second
1000 .000010 .001 .01 1
second second second second
10000 .000013 .01 13 1.67
second second second minutes
one .000020 1 20 11.57
million second second seconds days
300 .000028 5 2.34 3
million second minutes hours centuries
five .000032 1.38 1.86 7927
billion second hours days centuries

e Using the appropriate algorithm can make a big
in how fast you can solve a problem!

30

Solving Problems with Programs:
The Big Picture

e Four steps:

1. Select / derive algorithm.

2. Code algorithm as a program in some computer
language.

3. Compile program into an executable.

4. Run executable on input data to create results.

Algorithm

Word Processor

Program

Compile ¢ Compiler

Executable
Run Operating
System

Results

Solving Problems with Programs:
Count Sort in FORTRAN

program csort

integer L(100), C(50)
integer i, j, n, max, pos;

Read in list L

print *, "Number of elements?"
read *, n

print *, "Enter list:"
doi=1,n

read *, L(i)
end do

Find maximum value in list L

max = 0
doi=1,n
if (L(i).gt.max) then
max = L(i)
end if
end do

Count-sort algorithm

do i = 1, max
C(i) =0
end do
doi=1,n
C(L(i)) = C(L(i)) + 1
end do
pos =1
do i = 1, max
do j =1, C(1)
L(pos) = i
pos = pos + 1
end do
end do

Print out sorted version of list L
print *, "Sorted list:"
doi=1,n

print *, L(i)
end do

end

Solving Problems with Programs:
Count Sort in FORTRAN (Cont’d)

Script started on Thu May 1 15:02:38 2003
complexy, 1s

csort.f typescript

complexy, £77 csort.f

complexy, 1s

a.out csort.f typescript

complexy, a.out

Number of elements?

5

Enter list:

O e e I S

Sorted list:

DN -

7

complexy, a.out
Number of elements?
6

Enter list:

1
3
2
10
9
4

Sorted list:

D w N e

9

10
complex}, exit
Script done on Thu May 1 15:04:11 2003

Solving Problems with Programs:
Count Sort in C

#include<stdio.h>

int main(int argc, char** argv){

int L[100], C[50];
int i, j, n, max, pos;
char line[50];

// Read in list L

printf ("Number of elements?\n");
gets(line);
sscanf(line, "%d", &n);

printf("Enter list:\n");
for (i = 1; i <= n; i++) {
gets(line);
sscanf(line, "%d", &L[il);
}

// Find maximum value in list L

max = 0;
for (i =1; i <=mn; i=1+1) {
if (L[i] > max) {
max = L[i];
}
}

// Count-sort algorithm

for (i =1; i <=max; i =1+ 1) {
C[il = 0;

}

for (i =1; i<=mn; i=1+ 1) {

C[L[il] = C[L[i]] +

[y

pos = 1;
for (i =1; i <=max; i =1+ 1) {
for (j =1; j <=C[il; j =3 + 1) {
L[pos] = i;
pos = pos + 1;

}

// Print out sorted version of list L

printf("Sorted list:\n");

for (i =1; i <=mn; i=1+1) {
printf("%d\n", L[il);

}

} // End of main method

33

Solving Problems with Programs:
Count Sort in C (Cont’d)

Script started on Thu May 1 15:09:32 2003
complexy, 1s

csort.c typescript

complex), cc csort.c

/tmp/ccZu7fVL.o: In function ‘main’:
/tmp/ccZu7fVL.o(.text+0x25): the ‘gets’ function is dangerous and should not be used.
complexy, 1s

a.out csort.c typescript

complex), a.out

Number of elements?

5

Enter list:

DR, NN

Sorted list:
1
2
4
4
7

complexy, a.out
Number of elements?
6

Enter list:

1

3

2

10

9

4

Sorted list:

O > W N -

10
complex}, exit
Script done on Thu May 1 15:10:34 2003

Solving Problems with Programs:
Count Sort in Java

import java.io.x*;

class csort {
public static void main(String[] arg) throws IOException {

BufferedReader stdin =

new BufferedReader(new InputStreamReader(System.in));
int[] L = new int[100], C = new int[50];
int i, j, n, max, pos;

// Read in list L

System.out.println("Number of elements?");
n = Integer.parselnt(stdin.readLine());

System.out.println("Enter list:");
for (i = 1; i <= n; i++) {
L[i] = Integer.parselnt(stdin.readLine());

// Find maximum value in list L

max = 0;
for (i =1; i <=n; i=1i+1) {
if (L[i] > max) {
‘max = L[i];

}

// Count-sort algorithm

for (i =1; i <=max; i=1+ 1) {
Clil = 0;

}

for (i =1; i <=n; 1 =1+ 1) {
C[L[il] = CIL[i]l] + 1;

}

pos = 1;

for (i = 1; i <=max; i=1+ 1) {
for (j =1; j<=C[il; j=3j+ 1 {
L[pos] = i;
pos = pos + 1;

// Print out sorted version of list L

System.out.println("Sorted list:");

for (i =1; i <=n; i=1i+1) {
System.out.println(L[i]);

} // End of main method

} // End of class csort

35

Solving Problems with Programs:
Count Sort in Java (Cont’d)

Script started on Thu May 1 16:25:36 2003
complexy, 1s

csort.java typescript

complex), javac csort.java

complexy, 1ls

csort.class csort.java typescript
complex}, java csort

Number of elements?

5

Enter list:
2

7

4

1

4

Sorted list:
1

2

4

4

7

complex}, java csort
Number of elements?
6

Enter list:

1

3

2

10

9

4

Sorted list:

1

= O P W N

0
complex}, exit
Script done on Thu May 1 16:26:40 2003

37

Graph Problems:
What are Graphs?

e A graph G = (V, F) is a set of vertices V and a
set of edges F that link pairs of vertices. Each edge
may have an associated number (weight).

e Graphs are good at representing objects (vertices) and
relationships between objects (edges), e.g.,

— V = people, ¥ = friendships between people
— V' = university courses, 2 = pairs of courses that
have students in common

— V' = cities, E = roads between cities,
edge weights = distances

— V = houses, E = possible digital cable lines,
edge weights = costs of cables

38

Graph Problems:
Minimum Spanning Trees

e A tree is a graph without looping paths.

MINIMUM SPANNING TREE (MST)

Input: An edge-weighted graph G = (V, F).
Output: A tree in GG that connects all vertices in G
and whose summed edge-weight is minimal.

e Has applications in designing communication networks.

e The simplest known algorithm sorts the edges by
weight and adds edges starting with the lowest weight,
leaving off those edges that form looping paths, until
a tree is formed on all vertices in the graph — oddly
enough, such a tree is guaranteed to have minimal
summed edge-weight! This “greedy strategy” also
works if you start with an arbitrary vertex and build
the tree by always adding an edge with the smallest
possible weight that connects a new vertex to the tree.

e Time complexity: O(|V]?)

Graph Problems:
Minimum Spanning Trees:
Time Complexity

e Once again, on our megaflop computer . ..

Time Complexity
[-Search,
Input | B-Search | C-Sort M-Sort | S/I/B-Sort | MST
Size (n) | (logyn) (n) (nlog, n) (n?) (n*)
10 .000003 .00001 .00003 .0001 .001
second second second second second
20 .000004 .00002 .00008 .0004 .008
second second second second second
30 .000005 .00003 .0001 .0009 027
second second second second second
50 .000006 .00005 .0003 .0025 125
second second second second second
100 .000007 .0001 .0007 .01 1
second second second second second
1000 .000010 .001 01 1 16.67
second second second second minutes
10000 .000013 .01 13 1.67 11.57
second second second minutes days
one .000020 1 20 11.57 317
million second second seconds days centuries
300 .000028 5 2.34 3 9 x 10°
million second minutes hours centuries | centuries
five .000032 1.38 1.86 7927 4 x 10"
billion second hours days centuries | centuries

39

e This is starting to look bad; however, there are
much harder problems out there . ..

40

Graph Problems:
Graph Coloring

GRAPH k-COLORING (k-CoL)

Input: A graph G = (V, E), a number k > 1.
Output: Is it possible to color the vertices of G with
k colors such that no edge in G connects vertices with
the same color?

e Has applications in scheduling groups of events
(V' = events, k = time slots).

e When £ = 2, any vertex with one color requires
that all vertices connected to it have the other color.
This suggests a simple algorithm that fixes the color at
an arbitrary vertex in G and spreads colors
outwards in an alternating fashion to the rest of G;
if this strategy ever forces an edge to connect two
vertices of the same color, the graph requires more
than two colors = O(|E]) = O(|V]?) time.

e When k£ = 3, there does not appear be an efficient
algorithm for solving this problem. Indeed, the best
known algorithms essentially look at all possible 31V
colorings of the graph to see if any one of them satisfies
the problem conditions = O(3"1) time.

Graph Problems:

Graph Coloring:

Time Complexity

e Once again, on our megaflop computer . ..

41

Input Time Complexity
L-Search, S/1/B-Sort,
Input || B-Search | C-Sort M-Sort 2-Col MST 3-Col
Size (n) | (logyn) | (n) | (nlogym) | (n?) @) | @
10 .000003 .00001 .00003 .0001 .001 .06
second second second second second second
20 .000004 .00002 .00008 .0004 .008 58
second second second second second minutes
30 .000005 .00003 .0001 .0009 .027 7
second second second second second years
50 .000006 .00005 .0003 .0025 125 2 x 108
second second second second second | centuries
100 .000007 .0001 .0007 .01 1 2 x 10%
second second second second second | centuries
1000 .000010 .001 01 1 16.67
second second second second minutes
10000 .000013 .01 13 1.67 11.57
second second second minutes days
one .000020 1 20 11.57 317
million second second seconds days centuries
300 .000028 5 2.34 3 9 x 107
million second minutes hours centuries centuries
five .000032 1.38 1.86 7927 4 x 10"
billion second hours days centuries | centuries

e Can we do better? Nobody knows. Perhaps all we
need is a radically different kind of algorithm . ..

42

Conclusions

e [very algorithm is based on a simple intuition that is
refined over several successively more specific versions
into the finished algorithm.

e Ideally, you should verity your algorithm by tracing it
on paper before you implement it as a program.

e Algorithms are rarely both simple and efficient.
When selecting the best algorithm for an application,
you need to figure out whether simplicity or efficiency
is more important and then choose accordingly.

e There is still lots of work to be done . ..

References

Computer Science 2710 (Problem Solving & Programming) Page:
http://www.cs.mun.ca/~harold/Courses/List/CS2710.html

Computer Science 3711 (Algorithms and Complexity) Page:
http://www.cs.mun.ca/~harold/Courses/List/CS3711.html

Computer Science 3718 (Programming in the Small) Page:
http://www.cs.mun.ca/~harold/Courses/List/CS3718.html

Computer Science Unplugged Home Page:
http://unplugged.canterbury.ac.nz

