
1Enrihment Mini-Course Notes:
Inside Computer Programming

Todd WarehamDepartment of Computer SieneMemorial University of Newfoundlandharold�s.mun.aMay 3{4, 2004
Table of ContentsProblems, Algorithms, and Programs . 2Problems . 3Algorithms . 4 { 9The Searhing Problem . 10 { 16The Sorting Problem . 17 { 29Solving Problems with Programs .30 { 36Graph Problems . 37 { 41Conlusions . 42

2Problems, Algorithms, and Programs
Problem

Program Algorithm

Solved BySolved By

Implemented As� A problem is a set of inputs with a set of assoiatedoutputs. Eah input has one assoiated output.� An algorithm is a sequene of instrutions that solvesa given problem, i.e., given an input, the algorithmomputes the orresponding output.� A program is a sequene of instrutions in someomputer language, e.g., FORTRAN, C, Java, thatsolves a given problem.� A problem may have many algorithms; an algorithmmay be implemented as many programs;eah program implements one algorithm.Given a problem, whih algorithm for that problemshould we hoose to implement in a program?

3Problems� Example Problem #1:\Given the radius of a irle, what is that irle'sarea?" +Input: A radius r.Output: The area of a irle with radius r.� Example Problem #2:\If I know the grade a student is in, what type ofshool are they in?"+Input: A student grade-number g.Output: The type of shool with students ofgrade-number g.� Example Problem #3:\I have a list of numbers and I'd like to know whatthey add up to." +Input: A list L of numbers.Output: The sum of all numbers in L

4Algorithms:Basi Parts� Algorithm = data + instrutions� The most basi types of data are single-value piees of data(variables) or multiple-value indexed lists of data (lists).{ Eah variable or list has a name.{ The ith element of list L has the name L[i℄.� There are three basi types of instrutions:1. Assignmentsomething = something else2. Conditional (if-then-else)IF (something is true) THENdo thisELSEdo that3. Loop(a) Conditional LoopWHILE (something is true) DOthis(b) Counted LoopFOR some number of times DOthis

5Algorithms:Finding the Area of a CirleIntuition:\I know that the area of a irle with radius r is givenby the expression � � r2, where � = 3:14159."Algorithm:area = 3.14159 * r * rreturn(area)

6Algorithms:Determining your Shool TypeIntuition:\Let's see . . . If someone is in Grades 1 to 6, they arein elementary shool. If they are in grades 7 to 9, theyare in junior high shool. Otherwise, they are in highshool."Algorithm:if ((g >= 1) and (g <= 6)) thenshool_type = "elementary"else if ((g >= 7) and (g <= 9)) thenshool_type = "junior high"else if ((g >= 10) and (g <= 12)) thenshool_type = "high"elseshool_type = "invalid"return(shool_type)

7Algorithms:Summing a List of Numbers(Number of List Elements Spei�ed)Intuition:\How about I start with some sum-variable set to 0,and I go through the list and add eah list-element tothe sum-variable?"Algorithm:sum = 0for i = 1 to n dosum = sum + L[i℄return(sum)

8Algorithms:Summing a List of Numbers(End of List Spei�ed by -1-Value)Intuition:\Ohhhkaaaayyyy . . . One again, I start with somevariable set to 0. However, this time, I'll go throughthe list and add eah element to the sum-variable untilI hit an element with value -1. This means I'll haveto hek eah element before I add it to the sum-variable."Algorithm:sum = 0i = 1while (L[i℄ != -1) dosum = sum + L[i℄i = i + 1return(sum)

9Algorithms:Finding the Smallest Elementin a ListProblem:Input: A list L with n elements.Output: The position of the smallest element in L.Intuition:\If I don't know anything else about the list exeptthat it has n elements, I suppose I'll have to look atall of the list-elements and keep trak of the positionof the smallest one I've seen so far (I an use that toget the value whenever I need it). When I've lookedat the whole list, the smallest element I've found sofar is the smallest element in the list."Algorithm:min_pos = 1for i = 2 to n doif (L[i℄ < L[min_pos℄) thenmin_pos = ireturn(min_pos)

10The Searhing Problem� The problem of �nding if some value is inluded in agiven list ours in lots of appliations, e.g.,{ looking up a person's telephone number{ harging some amount to a person's redit ard{ �nding out if anyone won the Lotto 6-49 jakpotthis week
List SearhInput: A (unsorted/sorted) list L with n elements,a target-value t.Output: The position of the element with value t inL if suh an element exists and -1 otherwise.

�We will assume both list-elements and t are numbersfor the sake of simpliity; however, our algorithms willwork for any values that an be ordered, e.g., hara-ter strings.

11Unsorted-List Searh Algorithms:Linear SearhIntuition:\Well, if I don't know anything else about the listexept that it has n elements, I suppose I'll have tolook at eah element in the list and see if it is equal tothe target-value. If I �nd suh an element, I an stopand return that element's position; otherwise, I return-1 after I've look at all elements in the list. Soundslike a lot of work. Bummer."Algorithm:t_pos = -1i = 1while ((i <= n) and (t_pos == -1)) doif (L[i℄ == t) thent_pos = ii = i + 1return(t_pos)

12Sorted-List Searh Algorithms:Binary SearhIntuition:\Hmmm ... Whenever I look at L[i℄ where i is themiddle of the list and L[i℄'s not equal to the target-value, as L is sorted, I know that the target-value mustbe either above or below i in the list (depending onwhether the target-value is greater or less than L[i℄).I an keep repeating this in a loop until I either �ndthe target-value or run out of list to searh. Cool!"Algorithm (Version #1):set the urrent list to Lwhile we haven't found t in the listand there's still a urrent listto searh doif t isin't the middle element ofthe urrent list thenif t > middle element thenset urrent list to upperpart of urrent listelseset urrent list to lowerpart of urrent list

13Sorted-List Searh Algorithms:Binary Searh (Cont'd)Algorithm (Version #2):t_pos = -1left = 1right = nwhile ((t_pos == -1) and(left <= right)) dot_pos = (left + right) / 2if (L[t_pos℄ != t) thenif (t > L[t_pos℄) thenleft = t_pos + 1elseright = t_pos - 1t_pos = -1return(t_pos)

14Time Complexity:What Is It?� There are typially many algorithms for solving apartiular problem. Whih one do we use?) Use the simplest algorithm, i.e., the algorithm thatis easiest to understand and hene most likely tobe implemented orretly in a program.) Use the most eÆient algorithm, i.e.,the algorithm that requires the least amount ofomputer time to solve the problem!� As inputs may vary in size and an algorithm mayrequire di�erent amounts of time to ompute ondi�erent inputs, measures of algorithm eÆieny shouldbe phrased relative input size.� The (worst-ase) time omplexity of analgorithm is a funtion O(f(n)) of input size n thatupper-bounds the amount of time required by thatalgorithm to solve its assoiated problem relative toan input of size n.� By making appropriate abstrations, an make timeomplexity desribe the running time of an algorithmrelative to any possible omputer.

15Searh Algorithms:Time Complexity� You an get a rough estimate of worst-ase timeomplexity by multiplying out the number of timeseah loop in the algorithm will exeute in the worstase.� For searh algorithms, let the input size be n, thenumber of elements in the given list:{ Linear Searh: O(n) time{ Binary Searh: O(log2 n) time�Where did this funtion log2 n ome from?{ log2 n is the logarithm (base 2) of n.{ log2 n is essentially the number of times you andivide n by 2 until you get a result that is lessthan or equal to one, e.g., log2 4 = 2, log2 7 � 3,log2 16 = 4.{ As binary searh disards half of the given list eahtime we iterate the main loop, this loop an iterateat most log2 n times!

16Searh Algorithms:Time Complexity (Cont'd)� Suppose you have a omputer that exeutes a millioninstrutions per seond:Time ComplexityInput B-Searh L-SearhSize (n) (log2 n) (n)10 .000003 .00001seond seond20 .000004 .00002seond seond30 .000005 .00003seond seond50 .000006 .00005seond seond100 .000007 .0001seond seond1000 .000010 .001seond seond10000 .000013 .01seond seondone .000020 1million seond seond300 .000028 5million seond minutes�ve .000032 1.38billion seond hours� Binary searh muh faster than linear searh!� Are there eÆient algorithms for sorting lists?

17The Sorting Problem� The problem of sorting a given list ours wheneveryou want to set a list up for fast searh. It an alsohave other uses, e.g., deteting dupliate values.
List SortInput: A list L with n elements.Output: The sorted version of L.

� As with the list searh problem, we willassume list-elements are numbers for the sake ofsimpliity; however, our algorithms will work for anyvalues that an be ordered, e.g., harater strings.

18Sorting Algorithms:Seletion SortIntuition:\The �rst element in a sorted list is the smallest inthe list, the seond element is the smallest among theremaining elements in the list, and so on. Perhaps weould use our �nd-list-minimum algorithm in a loop!"Algorithm (Version #1):for i = 1 to n - 1 dofind minimum element in L[i .. n℄swap minimum element and element iAlgorithm (Version #2):for i = 1 to n - 1 domin_pos = ifor san = i + 1 to n doif (L[san℄ < L[min_pos℄) thenmin_pos = santemp = L[min_pos℄L[min_pos℄ = L[i℄L[i℄ = temp

19Sorting Algorithms:Insertion SortIntuition:\Suppose the �rst i � 1 elements of L are sortedalready; to add L[i℄ to this sorted list, all I need to dois shift elements of L[1::(i�1)℄ upwards until the spotwhere L[i℄ �ts is open. Say, I an loop this operationas well to add eah element in L[2::n℄ suessively tothe trivially sorted list L[1::1℄! Sweet!"Algorithm (Version #1):for i = 2 to n doshift elements of L[1 .. (i - 1)℄upwards until L[i℄'s spot is openopy L[i℄ into open spotAlgorithm (Version #2):for i = 2 to n doval = L[i℄new_pos = iwhile ((new_pos > 1) and(L[new_pos - 1℄ > val)) doL[new_pos℄ = L[new_pos - 1℄new_pos = new_pos - 1L[new_pos℄ = val

20Sorting Algorithms:Bubble SortIntuition:\In order for a list to be unsorted, there must be atleast one pair of adjaent list-elements L[i℄ and L[i+1℄suh that L[i℄ > L[i + 1℄. Suppose we kept goingthrough the list, swapping bad adjaent list-elementpairs until there weren't any more suh pairs?"Algorithm (Version #1):while list is not sorted dotraverse L, swapping bad adjaentlist-element pairs as neessaryif no swaps ourred thenthe list is sorted

21Sorting Algorithms:Bubble Sort (Cont'd)Algorithm (Version #2):sorted = falsewhile (not sorted) donum_swap = 0for i = 2 to n doif (L[i - 1℄ > L[i℄) thentemp = L[i - 1℄L[i - 1℄ = L[i℄L[i℄ = tempnum_swap = num_swap + 1if (num_swap == 0) then sorted = trueAlgorithm (Version #3):sorted = falsewhile (not sorted) dosorted = truefor i = 2 to n doif (L[i - 1℄ > L[i℄) thentemp = L[i - 1℄L[i - 1℄ = L[i℄L[i℄ = tempsorted = false

22Sorting Algorithms:Time ComplexitySeletion Sort:� Outer loop always exeutes n� 1 times.� Inner loop exeutes O(n) times, regardless of howsorted the input list is) O(n2) time.� In pratie, has lowest worst-ase running time.Insertion Sort:� Outer loop always exeutes n� 1 times.� In the worst ase (list sorted in reverse order), theinner loop exeutes O(n) times) O(n2) time.� In pratie, has lowest average-ase running time.Bubble Sort:� Inner loop always exeutes n� 1 times.� In the worst ase (list sorted in reverse order), theouter loop exeutes O(n) times) O(n2) time.� In pratie, has lowest best-ase running time.

23Sorting Algorithms:Time Complexity (Cont'd)� One again, on our megaop omputer . . .Time ComplexityInput B-Searh L-Searh S/I/B-SortSize (n) (log2 n) (n) (n2)10 .000003 .00001 .0001seond seond seond20 .000004 .00002 .0004seond seond seond30 .000005 .00003 .0009seond seond seond50 .000006 .00005 .0025seond seond seond100 .000007 .0001 .01seond seond seond1000 .000010 .001 1seond seond seond10000 .000013 .01 1.67seond seond minutesone .000020 1 11.57million seond seond days300 .000028 5 3million seond minutes enturies�ve .000032 1.38 7927billion seond hours enturies� The worst-ase running time won't our that often,so this isin't as bad as it seems. That being said,is there a sorting algorithm with a better worst-aserunning time? How about for restrited ases of thesorting problem?

24Sorting Algorithms:Merge SortIntuition:\You an sort a list L by separately sorting the topand bottom halves of the list and then merging theselists together to reate a full sorted list. How do yousort eah of the half-lists? Do the same thing on eahhalf-list! You an keep splitting lists in this fashionuntil you have lists of length one, whih are triviallysorted. Then you an baktrak and do the merging.Sounds bizarre, but it should work . . . "Algorithm (Version #1):MergeSort(L,ls,lf)if there is more than one elementin the urrent sublist thensort the bottom half of list Lsort the top half of list Lmerge the top and bottom halfsorted sublistswhere ls (lf) is the start (�nal) index of the urrentsublist being sorted.

25Sorting Algorithms:Merge SortAlgorithm (Version #2):MergeSort(L, ls, lf)if (ls < lf) thenlm = FLOOR((ls + lr) / 2)MergeSort(L,ls,lm)MergeSort(L,lm,lf)Merge(L,ls,lm,lf)Merge(L,ls,lm,lf)nb = (lm - ls) + 1nt = (lf - lm) + 1Create arrays BH and THfor i = 1 to nb doBH[i℄ = L[ls + (i - 1)℄for i = 1 to nt doTH[i℄ = L[lm + (i - 1)℄BH[nb + 1℄ = INFINITYTH[nt + 1℄ = INFINITYi = j = 1for k = ls to lf doif (BH[i℄ <= TH[j℄) thenL[k℄ = BH[i℄i = i + 1elseL[k℄ = TH[j℄j = j + 1

26Sorting Algorithms:Count SortIntuition:\All these general-purpose algorithms are very nie.However, suppose all list-elements in L are positiveintegers and the maximum-value max in L is small?I ould simply go through L one and ount how manytimes elements of eah value show up. All I have to dothen is go through my ount-list and print out eahvalue the number of times it appears in L!"Algorithm (Version #1):Create array C of length maxInitialize all entries of C to zerofor eah element L[i℄ in L doInrement C[L[i℄℄ by onefor eah element C[i℄ in C doif C[i℄ > 0 thenPut C[i℄ opies of i in L

27Sorting Algorithms:Count SortAlgorithm (Version #2):for i = 1 to max doC[i℄ = 0for i = 1 to n doC[l[i℄℄ = C[L[i℄℄ + 1pos = 1for i = 1 to max dofor j = 1 to C[i℄ doL[pos℄ = ipos = pos + 1

28Sorting Algorithms Redux:Time ComplexityMerge Sort:� Merge Sort is a reursive algorithm, i.e.,an algorithm that alls itself.� The time omplexities of reursive algorithms aredesribed by speial equations alled reurrenes.The reurrene for the time omplexity of MergeSort is as follows:T (n) = 8>><>>: O(1) n = 12T (n=2) +O(n) n > 1By math we will not go into here, this reurreneyields the time omplexity O(n log2 n).Count Sort:� Has loops that exeute n and max times)O(n +max) time.� Is only pratial if max is small.

29Sorting Algorithms Redux:Time Complexity (Cont'd)� One again, on our megaop omputer . . .Time ComplexityL-Searh,Input B-Searh C-Sort M-Sort S/I/B-SortSize (n) (log2 n) (n) (n log2 n) (n2)10 .000003 .00001 .00003 .0001seond seond seond seond20 .000004 .00002 .00008 .0004seond seond seond seond30 .000005 .00003 .0001 .0009seond seond seond seond50 .000006 .00005 .0003 .0025seond seond seond seond100 .000007 .0001 .0007 .01seond seond seond seond1000 .000010 .001 .01 1seond seond seond seond10000 .000013 .01 .13 1.67seond seond seond minutesone .000020 1 20 11.57million seond seond seonds days300 .000028 5 2.34 3million seond minutes hours enturies�ve .000032 1.38 1.86 7927billion seond hours days enturies� Using the appropriate algorithm an make a bigin how fast you an solve a problem!

30Solving Problems with Programs:The Big Piture� Four steps:1. Selet / derive algorithm.2. Code algorithm as a program in some omputerlanguage.3. Compile program into an exeutable.4. Run exeutable on input data to reate results.

Program

Algorithm

Executable

Results

Compiler

Operating
System

Editor /
Word Processor

Compile

Code

Run

31Solving Problems with Programs:Count Sort in FORTRANprogram sortinteger L(100), C(50)integer i, j, n, max, pos;* Read in list Lprint *, "Number of elements?"read *, nprint *, "Enter list:"do i = 1, nread *, L(i)end do* Find maximum value in list Lmax = 0do i = 1, nif (L(i).gt.max) thenmax = L(i)end ifend do* Count-sort algorithmdo i = 1, maxC(i) = 0end dodo i = 1, nC(L(i)) = C(L(i)) + 1end dopos = 1do i = 1, maxdo j = 1, C(i)L(pos) = ipos = pos + 1end doend do* Print out sorted version of list Lprint *, "Sorted list:"do i = 1, nprint *, L(i)end doend

32Solving Problems with Programs:Count Sort in FORTRAN (Cont'd)Sript started on Thu May 1 15:02:38 2003omplex% lssort.f typesriptomplex% f77 sort.fomplex% lsa.out sort.f typesriptomplex% a.outNumber of elements?5Enter list:27414Sorted list:12447omplex% a.outNumber of elements?6Enter list:1321094Sorted list:1234910omplex% exitSript done on Thu May 1 15:04:11 2003

33Solving Problems with Programs:Count Sort in C#inlude<stdio.h>int main(int arg, har** argv){int L[100℄, C[50℄;int i, j, n, max, pos;har line[50℄;// Read in list Lprintf("Number of elements?\n");gets(line);ssanf(line, "%d", &n);printf("Enter list:\n");for (i = 1; i <= n; i++) {gets(line);ssanf(line, "%d", &L[i℄);}// Find maximum value in list Lmax = 0;for (i = 1; i <= n; i = i + 1) {if (L[i℄ > max) {max = L[i℄;}}// Count-sort algorithmfor (i = 1; i <= max; i = i + 1) {C[i℄ = 0;}for (i = 1; i <= n; i = i + 1) {C[L[i℄℄ = C[L[i℄℄ + 1;}pos = 1;for (i = 1; i <= max; i = i + 1) {for (j = 1; j <= C[i℄; j = j + 1) {L[pos℄ = i;pos = pos + 1;}}// Print out sorted version of list Lprintf("Sorted list:\n");for (i = 1; i <= n; i = i + 1) {printf("%d\n", L[i℄);}} // End of main method

34Solving Problems with Programs:Count Sort in C (Cont'd)Sript started on Thu May 1 15:09:32 2003omplex% lssort. typesriptomplex% sort./tmp/Zu7fVL.o: In funtion `main':/tmp/Zu7fVL.o(.text+0x25): the `gets' funtion is dangerous and should not be used.omplex% lsa.out sort. typesriptomplex% a.outNumber of elements?5Enter list:27414Sorted list:12447omplex% a.outNumber of elements?6Enter list:1321094Sorted list:1234910omplex% exitSript done on Thu May 1 15:10:34 2003

35Solving Problems with Programs:Count Sort in Javaimport java.io.*;lass sort {publi stati void main(String[℄ arg) throws IOExeption {BufferedReader stdin =new BufferedReader(new InputStreamReader(System.in));int[℄ L = new int[100℄, C = new int[50℄;int i, j, n, max, pos;// Read in list LSystem.out.println("Number of elements?");n = Integer.parseInt(stdin.readLine());System.out.println("Enter list:");for (i = 1; i <= n; i++) {L[i℄ = Integer.parseInt(stdin.readLine());}// Find maximum value in list Lmax = 0;for (i = 1; i <= n; i = i + 1) {if (L[i℄ > max) {`max = L[i℄;}}// Count-sort algorithmfor (i = 1; i <= max; i = i + 1) {C[i℄ = 0;}for (i = 1; i <= n; i = i + 1) {C[L[i℄℄ = C[L[i℄℄ + 1;}pos = 1;for (i = 1; i <= max; i = i + 1) {for (j = 1; j <= C[i℄; j = j + 1) {L[pos℄ = i;pos = pos + 1;}}// Print out sorted version of list LSystem.out.println("Sorted list:");for (i = 1; i <= n; i = i + 1) {System.out.println(L[i℄);}} // End of main method} // End of lass sort

36Solving Problems with Programs:Count Sort in Java (Cont'd)Sript started on Thu May 1 16:25:36 2003omplex% lssort.java typesriptomplex% java sort.javaomplex% lssort.lass sort.java typesriptomplex% java sortNumber of elements?5Enter list:27414Sorted list:12447omplex% java sortNumber of elements?6Enter list:1321094Sorted list:1234910omplex% exitSript done on Thu May 1 16:26:40 2003

37Graph Problems:What are Graphs?� A graph G = (V;E) is a set of verties V and aset of edges E that link pairs of verties. Eah edgemay have an assoiated number (weight).
1

2

5

3

2

4

3

2

2

3
4

� Graphs are good at representing objets (verties) andrelationships between objets (edges), e.g.,{ V = people, E = friendships between people{ V = university ourses, E = pairs of ourses thathave students in ommon{ V = ities, E = roads between ities,edge weights = distanes{ V = houses, E = possible digital able lines,edge weights = osts of ables

38Graph Problems:Minimum Spanning Trees� A tree is a graph without looping paths.
Minimum Spanning Tree (MST)Input: An edge-weighted graph G = (V;E).Output: A tree in G that onnets all verties in Gand whose summed edge-weight is minimal.

� Has appliations in designing ommuniation networks.� The simplest known algorithm sorts the edges byweight and adds edges starting with the lowest weight,leaving o� those edges that form looping paths, untila tree is formed on all verties in the graph { oddlyenough, suh a tree is guaranteed to have minimalsummed edge-weight! This \greedy strategy" alsoworks if you start with an arbitrary vertex and buildthe tree by always adding an edge with the smallestpossible weight that onnets a new vertex to the tree.� Time omplexity: O(jV j3)

39Graph Problems:Minimum Spanning Trees:Time Complexity� One again, on our megaop omputer . . .Time ComplexityL-Searh,Input B-Searh C-Sort M-Sort S/I/B-Sort MSTSize (n) (log2 n) (n) (n log2 n) (n2) (n3)10 .000003 .00001 .00003 .0001 .001seond seond seond seond seond20 .000004 .00002 .00008 .0004 .008seond seond seond seond seond30 .000005 .00003 .0001 .0009 .027seond seond seond seond seond50 .000006 .00005 .0003 .0025 .125seond seond seond seond seond100 .000007 .0001 .0007 .01 1seond seond seond seond seond1000 .000010 .001 .01 1 16.67seond seond seond seond minutes10000 .000013 .01 .13 1.67 11.57seond seond seond minutes daysone .000020 1 20 11.57 317million seond seond seonds days enturies300 .000028 5 2.34 3 9� 109million seond minutes hours enturies enturies�ve .000032 1.38 1.86 7927 4� 1013billion seond hours days enturies enturies� This is starting to look bad; however, there aremuh harder problems out there . . .

40Graph Problems:Graph Coloring
Graph k-Coloring (k-Col)Input: A graph G = (V;E), a number k � 1.Output: Is it possible to olor the verties of G withk olors suh that no edge in G onnets verties withthe same olor?� Has appliations in sheduling groups of events(V = events, k = time slots).�When k = 2, any vertex with one olor requiresthat all verties onneted to it have the other olor.This suggests a simple algorithm that �xes the olor atan arbitrary vertex in G and spreads olorsoutwards in an alternating fashion to the rest of G;if this strategy ever fores an edge to onnet twoverties of the same olor, the graph requires morethan two olors) O(jEj) = O(jV j2) time.�When k = 3, there does not appear be an eÆientalgorithm for solving this problem. Indeed, the bestknown algorithms essentially look at all possible 3jV jolorings of the graph to see if any one of them satis�esthe problem onditions) O(3jV j) time.

41Graph Problems:Graph Coloring:Time Complexity� One again, on our megaop omputer . . .Input Time ComplexityL-Searh, S/I/B-Sort,Input B-Searh C-Sort M-Sort 2-Col MST 3-ColSize (n) (log2 n) (n) (n log2 n) (n2) (n3) (3n)10 .000003 .00001 .00003 .0001 .001 .06seond seond seond seond seond seond20 .000004 .00002 .00008 .0004 .008 58seond seond seond seond seond minutes30 .000005 .00003 .0001 .0009 .027 7seond seond seond seond seond years50 .000006 .00005 .0003 .0025 .125 2� 108seond seond seond seond seond enturies100 .000007 .0001 .0007 .01 1 2� 1032seond seond seond seond seond enturies1000 .000010 .001 .01 1 16.67 {seond seond seond seond minutes10000 .000013 .01 .13 1.67 11.57 {seond seond seond minutes daysone .000020 1 20 11.57 317 {million seond seond seonds days enturies300 .000028 5 2.34 3 9� 109 {million seond minutes hours enturies enturies�ve .000032 1.38 1.86 7927 4� 1013 {billion seond hours days enturies enturies� Can we do better? Nobody knows. Perhaps all weneed is a radially di�erent kind of algorithm . . .

42Conlusions� Every algorithm is based on a simple intuition that isre�ned over several suessively more spei� versionsinto the �nished algorithm.� Ideally, you should verify your algorithm by traing iton paper before you implement it as a program.� Algorithms are rarely both simple and eÆient.When seleting the best algorithm for an appliation,you need to �gure out whether simpliity or eÆienyis more important and then hoose aordingly.� There is still lots of work to be done . . .
ReferenesComputer Siene 2710 (Problem Solving & Programming) Page:http://www.s.mun.a/�harold/Courses/List/CS2710.htmlComputer Siene 3711 (Algorithms and Complexity) Page:http://www.s.mun.a/�harold/Courses/List/CS3711.htmlComputer Siene 3718 (Programming in the Small) Page:http://www.s.mun.a/�harold/Courses/List/CS3718.htmlComputer Siene Unplugged Home Page:http://unplugged.anterbury.a.nz

