2. (10 marks) For the algorithm below, derive a **worst-case** time complexity function $T(n)$.

```plaintext
i = 1
sum = 57
finished = false
while ((i <= n) and (not finished))
  for j = 1 to i do
    if (COND(i))
      sum = sum + (i/j)
      for k = 1 to log(n) do
        sum = sum + k
    else
      sum = sum - (j/i)
    if COND(sum) then
      finished = true
      i = 57
    else
      i = i + 1
    sum = sum / i + 63
```

Note that method `COND()` runs in 4 timesteps.

3. (10 marks) For the algorithm below, derive an **asymptotic worst-case**, i.e., Big-Oh, complexity function $O(f(n))$. Briefly explain the reasoning behind your derivation.

```plaintext
sum = 42
for i = 1 to n * log(n) do
  j = 1
  finished = false
  for k = 1 to n do
    if COND(sum)
      sum = sum / (k * i) + j
    while ((j <= n) and (not finished)) do
      finished = true
```

Note that method `COND()` runs in $(n + 13)$ timesteps.
4. **(8 marks)** For the algorithm below, derive a parameterized asymptotic worst-case time complexity function.

```plaintext
sum = 0
tsum = -15
for i = 1 to n do
    x = P1(n)
    sum = sum - x + 5
    for j = 1 to n * n do
        y = x / (P2(n) + P1(n))
        if (P3(n))
            if (P4(n))
                tsum = tsum + tsum
            else
                for j = 1 to log(n) do
                    if (P4(n))
                        y = y * i - j
                    tsum = tsum / y
        sum = sum - tsum * tsum
```

5. **(12 marks)** Prove or disprove the following:

 a) **(4 marks)** $f(n) = (n - 2)(n - 6)$ is not $\Theta(n^2)$.

 b) **(4 marks)** $f(n) = n^d + 10n^2$, where d is some integer constant greater than or equal to 2, is $O(n^d)$.

 c) **(4 marks)** $f(n) = 10^{127}2^n$ is $\Omega(3^n)$.

6. **(10 marks)** Determine the longest common subsequence (LCS) of the strings GAAGCCTA and TATCGA using the algorithms given on pages 394 and 395 of the textbook. Show the filled-in dynamic programming matrix, all created matrix-cell backpointers (as arrows between matrix cells rather than in a separate matrix), the backpointer path that gives an optimal LCS, and the LCS associated with that path.