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Abstract. The identification of peptides from tandem mass spectra is
an important part of many high-throughput proteomics pipelines. In
the high-throughput setting, the spectra are typically identified using
software that matches tandem mass spectra with putative peptides from
amino-acid sequence databases. The effectiveness of these search engines
depends heavily on the completeness of the amino-acid sequence database
used, but suitably complete amino-acid sequence databases are large, and
the sequence database search engines typically have search times that are
proportional to the size of the sequence database.

We demonstrate that the peptide content of an amino-acid sequence
database can be represented by a reformulated amino-acid sequence
database containing fewer amino-acid symbols than the original. In some
cases, where the original amino-acid sequence database contains many
redundant peptides, we have been able to reduce the size of the amino-
acid sequence to almost half of its original size. We develop a lower bound
for achievable compression and demonstrate empirically that regardless
of the peptide redundancy of the original amino-acid sequence database,
we can compress the sequence to within 15-25% of this lower bound.
We believe this may provide a principled way to combine amino-acid
sequence data from many sources without unduly bloating the resulting
sequence database with redundant peptide sequences.

1 Introduction

The identification of peptides from tandem mass spectra is an important part of
many high-throughput proteomics pipelines. In the high-throughput setting, the
spectra are typically identified using software that matches tandem mass spectra
with putative peptides from amino-acid sequence databases. The effectiveness of
these search engines depends heavily on the completeness of the amino-acid
sequence database used, but suitably complete amino-acid sequence databases
are large, and the search engines typically have search times that are proportional
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to the size of the sequence database. See [1, 2] for an extensive discussion of the
running time cost of these search engines.

An inherent weakness of sequence database search engines such as
SEQUEST [3], Mascot [4], and SCOPE [5], is that they struggle to identify
the tandem mass spectra of peptides whose sequence is missing from the se-
quence database. The obvious solution, then, is to construct amino-acid sequence
databases containing more of the peptide sequences that we might need in order
to identify tandem mass spectra. For example, the sequences of all protein iso-
forms listed as variant annotations in Swiss-Prot [6, 7] records can be enumerated
using the program varsplic [8, 9]. The resulting amino-acid sequence database
is more than 1.5 times the size of Swiss-Prot, but at most, it contains about 2%
additional peptides candidates. Since sequence database search engines typically
have search times proportional to the size of the input sequence database, this
increase in search time is a significant cost. Similarly, when we form the union
of a number of sequence databases in order to create a comprehensive search
database, merely ensuring non-redundancy at the protein sequence level leaves
significant peptide level redundancy. In this paper, we strive to rewrite amino-
acid sequence databases in such a way that most of the peptide redundancy is
eliminated without losing any peptide content.

Current mass spectrometers are capable of reliably acquiring tandem mass
spectra from ions with mass of up to about 3000 Daltons. However, the tan-
dem mass spectra from peptides with more than 20 amino-acids or charge
state 4 or more are rarely successfully interpreted by current sequence database
search engines. Further, most peptide identification workflows digest proteins
with trypsin, which cuts at either lysine or arginine (unless followed by proline).
These amino-acids occur with sufficient frequency that peptides longer than 25
amino-acids are rare. Bearing all this in mind, we can conservatively upper-
bound the length of peptides that sequence database search engines need to
consider at about 30 amino-acids. We adopt the terminology of DNA sequence
analysis and refer to a sequence of k amino-acids as a k-mer. The peptide con-
tent of an amino-acid sequence database is therefore represented by the set of
30-mers it contains.

We will refer to a number of commonly used amino-acid sequence databases
to demonstrate our approach. We will refer to the Swiss-Prot section of the
UniProt Knowledgebase [6, 7] as Swiss-Prot. The union of the Swiss-Prot,
TrEMBL, and TrEMBL-New sections of the UniProt Knowledgebase will be
referred to as UniProt. Many Swiss-Prot and UniProt entries contain protein
isoform annotations, but only a single sequence is provided per entry. To con-
struct a sequence database containing all of these isoforms, we use varsplic [8,
9] with the command line options

-which full -uniqids -fasta -varsplic -variant -conflict

to enumerate all original sequences plus all splice forms, variants and conflicts.
These sequence databases will be referred to as Swiss-Prot-VS and UniProt-
VS respectively. MSDB [10] (Mass Spectrometry protein sequence DataBase)
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Table 1. Sequence statistics of some sequence databases used for peptide identification
via tandem mass spectrometry.

Sequence Sequence Distinct
Database Length 30-mers Overhead

IPI-HUMAN 20358846 12115520 68%
IPI 54145883 29769766 81%
Swiss-Prot 56454588 44374286 27%
Swiss-Prot-VS 89541275 45307827 97%
UniProt 472581860 274510105 72%
UniProt-VS 506796094 275391669 84%
MSDB 481919777 276523755 74%
NRP 495502241 283160529 75%
NCBI-nr 619132252 378721915 63%
UnionNR 674700840 385369671 75%
Union 2157353500 385369671 460%

is a composite non-identical protein sequence database built from a number of
primary source databases. MSDB is often used in conjunction with the Mascot
sequence database search engine for protein identification. NCBI-nr [11] is a
composite, non-redundant protein database from NCBI constructed from various
sources. NRP [12] is a composite, non-redundant protein sequence database from
the Advanced Biomedical Computing Center at NCI in Frederick, MD. The
international protein index [13] (IPI) sequence databases, from EBI, are human,
mouse and rat sections from Swiss-Prot, TrEMBL, RefSeq and Ensembl. We
denote the human protein index by IPI-HUMAN, and the union of the three
pieces as IPI. Finally, we form the concatenation of each of these comprehensive
sequence databases to form a new comprehensive sequence database, Union,
comprising UniProt-VS, MSDB, NCBI-nr, NRP, and IPI. For completeness, we
also do the standard exact protein sequence redundancy elimination for Union,
since its constituent sequence databases contain common protein entries. The
protein level non-redundant version of Union is called UnionNR. Table 1 shows
the size, or sequence length, of these sequence databases, as well as the number
of distinct 30-mers they contain.

Suppose that we could rewrite each of these amino-acid sequence databases
as a new amino-acid sequence database that is:

Complete
Every 30-mer from the original sequence database is present,

Correct
Only 30-mers from the original sequence database are present, and

Compact
No 30-mer is present more than once.

Suppose further that such a complete, correct and compact sequence database
consists of a single sequence. Since the sequence is complete, a sliding 30-mer
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window on this sequence will generate all the 30-mers of our original sequence
database. Therefore, this sequence has at least as many amino-acids as our origi-
nal sequence database has distinct 30-mers. Hence the number of distinct 30-mers
of our original sequence database is a lower bound on the size of any complete
sequence database. The column Overhead of Table 1 shows the amount of ad-
ditional sequence contained in various sequence databases over and above this
lower bound. We will demonstrate how to construct complete, correct, compact
sequence databases that come as close as possible to this lower bound.

We note that the well known shortest (common) superstring (SCS) prob-
lem [14, 15] cannot be applied as it does not guarantee its output to be correct or
compact. Further, since the input sequences must be represented intact, the SCS
cannot take advantage of redundancy in the interior of the protein sequences.

2 Sequence Databases and SBH-Graphs

In order to compress the amino-acid sequences of our input sequence database,
we must first build a representation of its 30-mers.

Sequencing-by-Hybridization, proposed by Bains and Smith [16], Lysov et.
al. [17], and Drmanac et. al. [18], is a technique by which DNA is interrogated
by hybridization to determine the presence or absence of all possible length k
DNA sequences. The information from these experiments can be represented
in a graph, which we call the SBH-graph, first proposed by Pevzner [19]. The
graph contains a directed edge for every observed k-mer probe, from a node
representing the first (k − 1)-mer of the probe to a node representing the last
(k−1)-mer of the probe. Determining the original DNA sequence is then a matter
of finding a path through the SBH-graph that uses every edge, representing an
observed k-mer, at least once. See Figure 1 for a small SBH-graph example. As
shown in Figure 1, each node has its (k − 1)-mer sequence associated with it,
while each edge holds the nucleotide that is appended to the sequence at the
tail of the edge to form the k-mer it represents. We will use a SBH-graph to
represent all the k-mers of our input sequence database.

We point out the connection here to de Bruijn graphs [20]. The SBH-graph
is really just a subgraph of a de Bruijn digraph. A de Bruijn graph has edges
for all k-mers from the alphabet, and hence nodes for all (k − 1)-mers from the
alphabet. A de Bruijn sequence is a circular sequence from the alphabet that
represents all k-mers of the alphabet exactly once. A de Bruijn sequence can be
enumerated by constructing an Eulerian tour on the corresponding de Bruijn
graph, which happens to be an Eulerian graph. We call our de Bruijn subgraphs
SBH-graphs to emphasize that we are representing some subset of all the k-mers,
those k-mers found in the input sequence database. Despite this distinction, the
de Bruijn sequence represents the motivation for the results to follow.

Given G, the SBH-graph representation of the k-mers of the sequence
database S, we can identify the sequences of S with paths of G. In fact, any
sequence s containing only k-mers of S can be represented by a path on G.
Given s, we first locate the node representing the first (k−1)-mer of s. The edge
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Fig. 1. SBH-graph for 4-mers from the sequences: ACDEFGI, ACDEFACG, DEFGE-
FGI.

representing the first k-mer of s must be present since s contains only k-mers
from S. We follow this edge, and look for an edge representing the next k-mer
of s. The series of edges traced by this procedure corresponds to a path on G.
Conversely, we construct the sequence represented by some path by outputting
the (k − 1)-mer of the initial node of the path and then the sequence on each
edge of the path.

With this understanding of the equivalence of sequences on the k-mers of
S and paths on the SBH-graph, we must now determine what the complete,
correct, compact constraints imply for paths on our SBH-graph. Since each edge
of the SBH-graph represents a distinct k-mer from our input sequence database,
we obtain a complete, correct, compact sequence database by finding a path set
that uses each edge exactly once and by generating the sequences represented
by these paths.

Next, we must quantify the size of our new amino-acid sequence database.
Let S′ = {s′1, . . . , s′l} be our complete, correct, compact sequence database, and
let Nk be the number of distinct k-mers in our original sequence database. Since
S′ is complete, correct, and compact, we know that all k-mers are observed,
no extra k-mers are observed, and that each k-mer window generates a distinct
k-mer. Therefore

Nk =
l∑

i=1

windows(s′i) =
l∑

i=1

length(s′i) − (k − 1)

=⇒ l(k − 1) + Nk =
l∑

i=1

length(s′i)

Consequently, the size of S′ is

|S′| = length(s′1) + 1 + · · · + 1 + length(s′l) = Nk + lk − 1
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Fig. 2. Compressed SBH-graph for 4-mers from the sequences: ACDEFGI, ACDE-
FACG, DEFGEFGI.

The extra character we output with each sequence is an end-of-sequence marker,
necessary to ensure we don’t consider k-mers that straddle the end of one se-
quence and the start of the next. We can, of course, suppress the last end-of-
sequence marker.

The important thing to notice here is that the only parameter we are free to
change in order to reduce the size of S′ is the number of sequences it contains.
Therefore, constructing a minimum size complete, correct, compact sequence
database is equivalent to minimizing the number of paths in a SBH-graph path
set such that each edge is used exactly once.

The best possible scenario, then, is that our SBH-graph admits an Eulerian
path. In this case, one path is sufficient. Note that this lemma effectively restates
our lower bound on the minimum size of any complete sequence database.

Lemma 1. The set of k-mers of S can be represented by a complete, correct,
and compact sequence database of size (k− 1)+Nk if and only if the SBH-graph
of S admits an Eulerian path.

In this work, we will use a compressed SBH-graph to represent the k-mers
of our sequence database. The compressed SBH-graph (CSBH-graph) represents
the same information as the SBH-graph, except that paths through trivial nodes,
those with in and out degree one, are turned into a single edge. Where an edge
of the CSBH-graph replaces a path through trivial nodes, we associate the con-
catenation of the character on the edges of the path with the new edge. Figure 2
shows the CSBH-graph corresponding to the SBH-graph of Figure 1. It should
be clear that all of the preceding discussion, including Lemma 1, holds just as
well for CSBH-graphs as for SBH-graphs.

Lemma 2. The set of k-mers of S can be represented by a complete, correct,
and compact sequence database of size (k−1)+Nk if and only if the CSBH-graph
of S admits an Eulerian path.

We use the CSBH-graph instead of the SBH-graph because it is much smaller,
with many fewer nodes and edges. However, building the CSBH-graph for a
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Table 2. SBH-graph and CSBH-graph sizes for some sequence databases used for
peptide identification via tandem mass spectrometry.

Sequence SBH-graph CSBH-graph
Database Nodes Edges Nodes Edges

IPI-HUMAN 12119290 12115520 115246 111476
IPI 29645471 29769766 545356 669651
Swiss-Prot 44352317 44374286 550060 572029
Swiss-Prot-VS 45259553 45307827 609679 657953
UniProt 274510105 274510105 4075920 4445958
UniProt-VS 274995795 275391669 4132200 4528074
MSDB 276094660 276523755 4313501 4742596
NRP 282706577 283160529 4443077 4897029
NCBI-nr 384256196 378721915 5534281 5978394
Union(NR) 384866007 385369671 5758507 6262171

given amino-acid sequence database is non-trivial, particularly for k = 30 and an
alphabet of size 20. Clearly we could first build the SBH-graph and remove trivial
nodes, but the initial cost to build the SBH-graph quickly becomes prohibitive.
We avoid these issues by constructing the CSBH-graph directly, using a suffix-
tree data-structure. Table 2 shows the sizes of the SBH and CSBH-graphs for
each of the sequence databases of Table 1.

3 Optimal Complete, Correct,
Compact (C3) Enumeration

For a directed graph G = (V, E), we define δi(v) and δo(v) to be the in and
out degree of node v ∈ V . Further, we define b(v) = δi(v) − δo(v). b(v) is called
the degree deficit if b(v) < 0 and the degree surplus if b(v) > 0. A node v
with b(v) = 0 is called balanced, otherwise it is called unbalanced. A graph
or connected component is called balanced if all of its nodes are balanced and
unbalanced otherwise. We define V+ to be the set of surplus degree nodes and
n+ to be number of these nodes. Similarly, we define V− to be the set of deficit
degree nodes and n− to be the number of these nodes. The total degree surplus
is defined to be B+ =

∑
v∈V+

b(v) while the total degree deficit is defined as
B− =

∑
v∈V− b(v). The degree surplus of a connected component C ⊆ V is

defined to be B+(C) =
∑

v∈V+∩C b(v), with the B−(C) defined analogously.
In practice, CSBH-graphs built from amino-acid sequence databases with

k = 30 fail to be Eulerian on two counts. First, very few nodes of the graph
are balanced, and second, the graphs usually have more than one connected
component. Table 3 shows the extent to which the CSBH-graphs of 30-mers
built for our test set of amino-acid sequence databases fail to be Eulerian.

We must, of course, have at least one path in our path set per component.
For each balanced component, we require exactly one path, an Eulerian tour, as



Sequence Database Compression for Peptide Identification 237

Table 3. CSBH-graph statistics of some sequence databases used for peptide identifi-
cation via tandem mass spectrometry.

Degree Total Degree Total
Sequence Surplus Surplus Deficit Deficit Components
Database Nodes Degree Nodes Degree (Balanced)

IPI-HUMAN 57275 57971 56975 57971 23076 (1)
IPI 267896 273052 267329 273052 35728 (2)
Swiss-Prot 270279 276262 270228 276262 93611 (0)
Swiss-Prot-VS 299410 307551 299154 307551 93624 (0)
UniProt 1992448 2086977 1988855 2086977 626503 (5)
UniProt-VS 2019828 2116632 2015947 2116632 626470 (5)
MSDB 2112761 2213341 2101795 2213341 629636 (6)
NRP 2175883 2281329 2164551 2281329 643496 (6)
NCBI-nr 2712544 2826497 2701270 2826497 850325 (7)
Union(NR) 2822070 2943180 2810160 2943180 863078 (8)

per Lemma 2. We denote the number of balanced components by m. What then,
for unbalanced components? Lemma 3 prescribes a lower bound on the number
of paths required.

Lemma 3. If C is an unbalanced component of a CSBH-graph, then we require
at least B+(C) paths, in order to use each edge exactly once.

Proof. Given a path set, suppose we consider each path, in turn, and delete its
edges from C. The deletion of the edges of a path from s to t increases b(s)
by one, decreases b(t) by 1, and leaves the remaining b(v), v �= s, t unchanged.
Since the path set uses every edge exactly once, when the process is complete we
must have b(v) = 0 for all nodes v ∈ V . Therefore, there must have been −b(v)
paths starting at nodes v ∈ V− ∩ C and b(v) paths ending at nodes v ∈ V+ ∩ C.
Therefore, we require at least max{B+(C),−B−(C)} paths in the path set, each
of which starts at a node of V− ∩C and ends at a node of V+ ∩C. By induction
on the edges of C, it is straightforward to show that B+(C) = −B−(C). ��

What we have shown then is that our path set must contain at least B+ +m
paths. All that remains is to demonstrate how this bound can be achieved.

Lemma 4. Given an unbalanced component C of a CSBH-graph G, there exists
a path set of size B+(C) that uses each edge exactly once.

Proof. We add B+(C)− 1 artificial restart edges from nodes of V+ ∩C to nodes
of V− ∩C. The edges are added in such a way that v ∈ V+ ∩C has at most b(v)
outgoing restart edges, while v ∈ V− ∩ C has at most −b(v) incoming restart
edges. The resulting CSBH-graph must contain exactly two unbalanced nodes,
s with b(s) = −1 and t with b(t) = 1. Therefore, we can construct an Eulerian
path between s and t that uses every edge exactly once. This Eulerian path can
then broken into B+(C) paths at the restart edges and the lemma is shown. ��
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Fig. 3. Compressed SBH-graph with artificial edge (dashed) for 4-mers from the se-
quences: ACDEFGI, ACDEFACG, DEFGEFGI.

Thus, we have demonstrated how to construct a complete, correct, compact
sequence database of minimum size.

Theorem 1. Let G be the CSBH-graph of an input sequence S for some mer
size k with m balanced components and total degree surplus B+. Then the optimal
complete, compact, correct sequence database with respect to S and k has size

Nk + k(m + B+) − 1.

Figure 3 shows the CSBH-graph of Figure 2 with its required B+−1 = 2−1 =
1 artificial restart edge(s) inserted. The Eulerian path of this graph leads to the
minimum length 4-mer enumeration: DEFACG, ACDEFGEFGI; which uses 17
characters, instead of the original 25 characters, to represent 10 distinct 4-mers.
The lower bound implied by Lemma 2 is 13 characters.

4 Computational Experiments

Table 4 shows the performance of the C3 30-mer enumeration strategy as a
compression technique for the amino-acid sequence databases of Table 1.

We notice that despite the widely varying degree of overhead of the original
sequence databases, the overhead of the compressed version is typically in the
15-25% range. For those sequence databases, such as Swiss-Prot, which have
little overhead, the compression is not particularly impressive, but for those
sequence databases containing lots of peptide level redundancy, such as Swiss-
Prot-VS, UniProt-VS, or Union, the compression is significant. Even for sequence
databases with moderate overhead, the compression is substantial. This compres-
sion technique has reduced each of the sequence databases to approximately the
same level of peptide redundancy.

Most encouraging is the performance of the compression on the Swiss-Prot-
VS, UniProt-VS and Union sequence databases. These sequence databases are
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Table 4. Size of optimal complete, correct, compact 30-mer enumerations for sequence
databases used for peptide identification via tandem mass spectrometry.

Sequence C3 30-mer Compression
Database Enumeration Overhead Compression Bound

IPI-HUMAN 13854679 14.35% 68.05% 59.51%
IPI 37961385 27.52% 70.11% 54.98%
Swiss-Prot 52662145 18.68% 93.28% 78.60%
Swiss-Prot-VS 54534356 20.36% 60.90% 50.60%
UniProt 337119564 22.81% 71.34% 58.09%
UniProt-VS 338890778 23.06% 66.87% 54.34%
MSDB 342924164 24.01% 71.16% 57.38%
NRP 351600578 24.17% 70.96% 57.15%
NCBI-nr 463517034 22.39% 74.87% 61.17%
UnionNR 473665310 22.91% 70.20% 57.12%
Union 473665310 22.91% 21.96% 17.86%

constructed specifically to create richer peptide candidate lists, but they neces-
sarily contain many redundant peptide candidates. As discussed in the introduc-
tion, the Swiss-Prot-VS sequence database contains about 2% additional distinct
30-mers, despite being more than 1.5 times the size of Swiss-Prot. After compres-
sion, Swiss-Prot-VS is smaller than the original Swiss-Prot sequence database.
With no modification of existing search engines, we can search all the isoforms
of Swiss-Prot in less time than it would take to search the original Swiss-Prot
sequence. The Union sequence database is compressed to about three quarters of
the size of one of its constituents, NCBI-nr. Again, without any modification to
our existing search engines, we can search all isoforms of UniProt, all of MSDB,
all of NRP, all of IPI, and all of NCBI-nr in less time than it takes to search the
original NCBI-nr sequence.

5 Conclusion

We have shown that the peptide content of an amino-acid sequence database can
be represented in a reformulated amino-acid sequence database containing fewer
amino-acid symbols than the original. We have demonstrated how to construct
an enumeration of all k-mers of a sequence database that is complete, correct and
compact, and shown that this representation is as small as possible. We believe
that this technique will be most useful for sequence databases that contain lots
of peptide level redundancy, such as those constructed to enumerate protein
isoforms or merge sequence databases from different sources. In some cases, this
technique makes it possible to search a richer set of peptide candidates using
sequence databases that are no bigger than their less expressive counterparts.

There remains much work to be done. We have not addressed a number of
issues that must be resolved before we can use such a sequence database with
Mascot or SEQUEST. In the process of our k-mer enumeration, our amino-
acid sequences lose all explicit connection to their original protein sequence and
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annotation. We have effectively decoupled the problem of associating peptide se-
quences with spectra and the problem of determining which proteins the peptides
represent. Fortunately, searching for exact peptide sequences in large sequence
databases can be done very quickly using well established string matching tech-
niques, particularly since we only need to do this for 10-20 peptides per spectrum.
The key piece of infrastructure required to accomplish this is a tool that can take
a Mascot or SEQUEST output file and a sequence database as input, and output
a new Mascot or SEQUEST output file with the protein information inserted
appropriately.

For some use cases, our requirement that we represent all 30-mers is too
strong. In particular, for identification of tandem mass spectra, we often search
only for those peptides that have trypsin digest motifs at each end. A complete,
correct, compact tryptic peptide enumeration would be a natural specialization
of this work. However, in order to implement this, we would need either to be
able to build a CSBH-graph like data-structure for variable length mers, or to
consider tryptic fragment “characters” as input to the problem.

For those use cases, such as peptide identification, in which 30-mers are
merely an upper bound on the length of relevant sequences, we note that there
is no particular advantage in insisting that all 30-mers are distinct, since this
guarantees nothing about the number of occurrences of shorter sequences. In fact,
we believe that it should be possible to compress our input sequences databases
still further by relaxing the compactness constraint, permitting k-mers to appear
more than once in the output. Instead of adding restart edges, we may, perhaps,
reuse edges to get from the end of one path to the start of another. Given the
similarity of this variant of the problem to the well known “Chinese Postman
Problem” [21], we believe that this variant may also be solved to optimality in
polynomial time using some sort of matching formulation.

A less obvious application of this k-mer enumeration is in suffix tree com-
pression. For applications such as the peptide candidate generation [1], in which
we only traverse the suffix tree nodes to a bounded depth k, the suffix tree of
the k-mer enumeration contains the same suffixes (to depth k) as our original
sequence database’s suffix tree. However, since the memory requirements of suf-
fix trees are linear in size of the underlying sequence, the suffix tree built on the
k-mer enumeration will require a smaller memory footprint.
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