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Abstract. Tandem mass spectrometry has become central in proteo-
mics projects. In particular, it is of prime importance to design sensitive
and selective score functions to reliably identify peptides in databases.
By using a huge collection of 140 000+ peptide MS/MS spectra, we sys-
tematically study the importance of many characteristics of a match
(peptide sequence/spectrum) to include in a score function. Besides clas-
sical match characteristics, we investigate the value of new characteristics
such as amino acid dependence and consecutive fragment matches. We fi-
nally select a combination of promising characteristics and show that the
corresponding score function achieves very low false positive rates while
being very sensitive, thereby enabling highly automated peptide identi-
fication in large proteomics projects. We compare our results to widely
used protein identification systems and show a significant reduction in
false positives.

1 Introduction

Tandem mass spectrometry (MS/MS) combined with database searching has
become central in proteomics projects. Such projects aim at discovering all or
part of the proteins present in a certain biological tissue, e.g. tears or plasma.
Before MS/MS can be applied, the complexity of the initial sample is reduced
by protein separation techniques like 2D-page or liquid chromatography (LC).
The proteins of the resulting simpler samples are digested by an enzyme that
cleaves the proteins at specific locations. Trypsin is frequently used for this pur-
pose. MS/MS analysis is performed on the digestion products, which are named
peptides. Alternatively, early digestion can be applied and peptide separation
techniques used. In both cases, the peptides are positively ionized and frag-
mented individually [18] and, finally, their masses as well as the masses of their
fragments are measured. Such masses constitute a data set, the experimental
MS/MS spectrum, that is specific to each peptide. The MS/MS spectra can be
used to identify the peptides by searching into a database of peptide sequences.
By extension, this procedure allows to identify the proteins [9,16].

MS/MS database searching usually involves the comparison of the experi-
mental MS/MS spectrum with theoretical MS/MS spectra, computed from the
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peptide sequences found in the database. A (peptide) score function or scor-
ing scheme is used to rate the matching between theoretical and experimental
spectra. The database peptide with the highest score is usually considered as
the correct identification, provided the score is high enough and/or significant
enough.

Clearly, the availability of sensitive and selective score functions is essential to
implement reliable and automatic MS/MS protein identification systems. In [3]
we proposed a generic approach (OLAV) to design such score functions. This
approach is based on standard signal detection techniques [22]. In this paper
we apply it to LC electrospray ionization ion trap (LC-ESI-IT) mass spectra
and we study the relative interest of various quantities we can compute when we
compare theoretical and experimental spectra. We finally select a combination of
such quantities and establish the performance of the corresponding score function
by performing large-scale computations. For reference purposes, we give results
obtained with Mascot [20], a widely used commercial protein identification pro-
gram (available from Matrix Sciences Ltd), and we report the performance we
obtain on a generally available data set [13] for which Sequest [6,28] (available
from ThermoFinnigan) results have been published [13,12].

Currently available protein identification systems can be classified into three
categories: heuristic systems, systems based on a mathematical model and hybrid
systems. In the heuristic category there are well known commercial programs:
Mascot, Sequest and SONAR MS/MS [7]. Sequest and SONAR correlate theo-
retical and experimental spectra directly, without involving a model. Mascot in-
cludes a limited model [19] as well as several heuristics intended to capture some
properties related to signal intensity and consecutive fragment matches. Model-
based systems use stochastic models to assess the reliability of matches. In this
category we find: MassLynx (available from Micromass Limited [25]), SCOPE
[2], ProbId [29] and SHERENGA [4]. SCOPE considers fragment matches as in-
dependent events and estimates a likelihood by assuming a Gaussian distribution
of mass errors. MassLynx uses a Markov chain to estimate the correct match
likelihood and to model consecutive fragment matches. ProbId uses Bayesian
techniques to estimate the probability a match is correct. It integrates several
elementary observations like peak intensities and simultaneous detection of frag-
ments in several series. SHERENGA estimates a likelihood ratio by considering
every fragment match as an independent Bernoulli random variable. [8] improves
over SHERENGA by considering signal intensity and neutral losses. The hybrid
category generally uses multivariate analysis techniques to filter the results re-
turned by heuristic systems [1,12,14,17,23].

The knowledge of which are the essential quantities to include in a score
function is certainly beneficial to most of the approaches above.

According to the relative performance of the various score functions we
tested, the most important quantity to include in a score function is the prob-
ability to detect each ion type. The next quantity is the intensity of detected
fragment: intense fragment must match with probabilities depending on the ion
type. Then, different extra quantities improve performance: probability to detect
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a fragment depending on its amino acid composition, probability to observe con-
secutive fragment matches. By combining these quantities in a naive Bayesian
classifier, we design a score function that has a false positive rate as low as 3%
is the true positive rate is fixed at 95%. On data set [13], the false positive rate
is inferior to 0.5%.

It is difficult to compare peptide score functions without testing them on
the same data set. As a matter of fact, MS/MS data are noisy and of variable
precision. Hence, the absolute performance of a given score function may change
depending on data set quality. According to our experience, the relative advan-
tage of a score function compared to another one is generally stable from data
sets to data sets. To allow readers to compare our results with their own experi-
ence, we report them by using an available data set or with a standard algorithm
tested on the same set. We observe a strong advantage in favor of the approach
we propose.

2 Mass Spectrometry Concepts

2.1 ESI Ion Trap Instruments

Current peptide ionization methods that are common in proteomics include
electrospray ionization (ESI) and matrix assisted laser desorption ionization
(MALDI) [10]. Several technologies are also available for selecting and fragment-
ing the accelerated peptides, one of which is quadrupole ion trap (IT) [11,26]. IT
represents a significant and growing portion of the mass spectrometers used in
proteomics. The approach presented in [3] is not specific to ESI-IT mass spectra.

ESI produces positively charged ions, whose charge states are mainly two or
three. An IT instrument breaks peptides by low-energy collision-induced dissoci-
ation (CID) [26]. The fragmentation process yields several ion types (a, b, y) [18],
depending on the exact cleavage location. The proportion of each ion type pro-
duced changes with the MS/MS technology. Additionally, certain amino acids
can loose one water (H2O) or ammonia (NH3) molecule. Consequently, fragment
ion masses can be shifted by -18 Da and/or -17 Da.

Every mass spectrometry instrument produces a signal that can be assumed
to be continuous. Peak detection software is used for extracting peptide or frag-
ment masses from this signal. The list of extracted masses is named a peak list.
When we refer to a spectrum, we always refer to the corresponding peak list,
which is the primary data for identification.

2.2 Matching Theoretical and Experimental Spectra

We do not describe here how to compute theoretical spectra [26]. It is suffi-
cient to know that, given an amino acid sequence, there exit precise rules to
compute the mass of every possible fragment of each ion type. The theoretical
spectrum consists of the masses of fragments for a selected set S of ion types. S
is instrument technology dependent. S also depends on the peptide charge state.
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We name the comparison of an experimental spectrum with a theoretical
spectrum a match. A match can be either correct or random. From the match
we compute several quantities that are then used by the score function. These
quantities are modeled as random variables. It is convenient to represent them
by a random vector E.

The score function is intended to distinguish between correct and random
matches. This problem can be viewed as an hypothesis testing problem. In [3]
we propose to build score functions as log-likelihood ratios as this approach yields
optimal decision rules [22], provided E probability distributions are known in
the correct (H1) and random (H0) cases. In practice, we have to approximate
these two distributions. Nevertheless, we believe that log-likelihood ratios are
very effective for peptide scoring, which is confirmed by the high performance
we achieve, see Section 4. In [3] we give other arguments to justify this point of
view.

3 Statistical Modeling

3.1 Data Set

We analyzed by proteomics two pools of 2.5 liters of plasma. One control pool
and one diseased pool (coronary artery disease), each containing roughly 50
selected patients. Multidimensional liquid chromatography was applied, yielding
roughly 13 000 fractions per pool, which were digested by trypsin and analyzed
by mass spectrometry (LC-ESI-IT) using 40 Bruker Esquire 3000 instruments.

The set of ion trap mass spectra we use is made of 146 808 correct matches,
33 000 of which have been manually validated. The other matches have been
automatically validated by a procedure, which, in addition to fixed thresholds,
includes biological knowledge and statistics about the peptides that were vali-
dated manually. There are 3329 singly charged peptides (436 distinct), 82 415
doubly charged peptides (3039 distinct) and 61 064 triply charged peptides (2920
distinct).

Every performance reported in this paper is obtained by randomly selecting
independent training and test sets, which sizes are 3000 and 5000 matches re-
spectively (1000/2329 for charge 1). This procedure is repeated 5 times and the
results averaged. We also checked that both model parameters and performance
barely change from set to set.

In order to validate one important hypothesis at Section 3.6, we use an-
other set of 1874 doubly charged peptides (73 distinct) and 4107 triply charged
peptides (90 distinct). The spectra were acquired on 4 Bruker Esquire 3000+
instruments. We refer to this data set as data set B. Data set [13] has been
generated by a ThermoFinnigan LCQ ion trap instrument.

3.2 Theoretical Spectrum and Neutral Losses

As we mentioned in Section 2.1, certain amino acids may lose water or ammo-
nia (a so-called neutral loss). By considering the chemical structure of amino
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Table 1. Neutral loss statistics. Relative abundance in Cys CAM, Asn, Gln,
Arg, Ser and Thr between b-17 and b, b-18 and b, etc. Other amino acids are
not enriched significantly. Mean and standard deviation are computed from all
amino acid enrichments. ∗Cys CAM.

Singly charged peptides
Ions CysC∗ Asn Gln Arg Mean std dev Ions Ser Thr Mean std dev

a-17 1.2 1.7 1.3 0.7 1.00 0.25 a-18 1.2 1.4 0.98 0.24
b-17 1.2 2.1 1.5 1.9 1.08 0.37 b-18 1.2 1.3 0.94 0.19
y-17 1.0 1.9 1.2 2.3 1.13 0.42 y-18 1.2 1.0 1.04 0.14

Doubly charged peptides

a-17 1.0 1.9 0.9 0.4 1.02 0.28 a-18 1.2 1.2 0.99 0.21
b-17 1.2 1.6 1.2 0.9 1.00 0.18 b-18 1.2 1.2 0.93 0.19
y-17 1.2 1.5 1.5 0.9 1.04 0.19 y-18 1.1 1.2 1.00 0.13

Triply charged peptides

b-17 1.0 1.4 0.9 0.9 1.00 0.20 b-18 1.4 1.1 0.95 0.20
y-17 0.8 1.5 1.3 0.8 0.99 0.23 y-18 1.1 1.6 0.94 0.28

b++-17 0.9 1.0 1.0 1.0 0.99 0.05 b++-18 1.1 1.1 0.98 0.06
y++-17 1.0 1.0 1.0 0.8 0.99 0.11 y++-18 1.0 1.2 0.99 0.13

acids [26], we observe that Arg (R), Asn (N) and Gln (Q) may loose ammo-
nia, and Ser (S) and Thr (T) may loose water. In order to break disulfur bonds,
Cys (C) are modified. A common modification is S-carboxamidomethyl cysteines
(Cys CAM, +57 Da) whose chemical structure [26] suggests a potential loss of
ammonia. In the data sets we use (except [13]), Cys are modified as Cys CAMs.

To be able to compute realistic theoretical spectra, we check which of the
amino acids above loose water or ammonia significantly. This point has been
already considered by [27] for doubly charged peptides and based on a much
smaller data set. We follow a similar approach, i.e. we assume that every amino
acid may loose water or ammonia and we compute the amino acid composition
of matched ions a, b, y and a,b,y-17,18. Finally, the amino acid compositions are
compared to find significant enrichments. The results are shown in Table 1 and
we decide to exclude Cys CAM. Asn is kept although it is only significant for
singly charged peptides. We checked that including it provides a small benefit
for singly charged peptides without penalizing higher charge states (data not
shown).

3.3 Comparing Peptide Score Functions

To supplement the peptide scores with p-values, we have introduced in [3] a
method for generating random matches and thus random scores. The general
principle is the following: given a match, we generate a fixed number of ran-
dom peptide sequences, with appropriate masses and possible PTMs, by using
a Markov chain. The random peptides are matched with the original spectrum
to estimate the random score distribution. Now, to compare the relative perfor-
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mance of various score functions, we compute, for each correct match, the ratio
of the correct match score with the best of 10 000 random match scores.

3.4 A Basic Reference Score Function

We define a first score function L1, which we will refer to as the minimal score
function. Every potentially improved score function will be compared to this one.
L1 is a slight extension (charge state dependence) of a score function introduced
in [4] and it can be derived as follows. We assume that fragment matches (tol-
erance given) constitute independent events and the probability of these events
depends on the ion type θ ∈ S and the peptide charge state z. We denote this
probability pθ(z). Now, let s = a1 · · · an be a peptide sequence and ai its amino
acids. The probability of a correct match between s and an experimental spec-
trum is estimated by taking the product of pθ(z) for every matched fragment
and of 1− pθ(z) for every unmatched fragment. The null-model is identical with
random fragment match probabilities rθ(z). We find

L1 = log




n∏
i=1


 ∏

θ∈M(s,i)

pθ(z)
rθ(z)

∏
θ∈S(s,i)−M(s,i)

1 − pθ(z)
1 − rθ(z)




 .

S(s, i) ⊂ S is the set of ion types ending at amino acid ai, M(s, i) ⊂ S(s, i)
is the set of ion types matching experimental fragment mass. S(s, i) may be a
proper subset of S because certain ions are not always possible depending on
the fragment last amino acid (neutral loss). pθ(z), θ ∈ S, are learnt from a set of
correct matches. The probabilities of random fragment matches rθ(z) are learnt
from random peptides.

We use relative entropy in bit Hθ(z) = pθ(z) log2(pθ(z)/rθ(z)) to measure
the importance of each ion type. For z = 1, 2, 3, we empirically determined a
threshold that is a constant divided by the average peptide length given z. The
performance of L1 and the list of ion types selected are robust with respect to
threshold variations. In decreasing order of Hθ(z), we use: (z = 1) y, b-18, b,
y-17, b-17, (z = 2) y, b, b-18, b-17, y-18, y-17 and (z = 3) y, b++, b, b++-18,
y++, b++-17, y++-18, y-18, y++-17, b-18. The performance results are shown in
Table 2.

3.5 Consecutive Fragment Matches

The score function L1 is based on a very strong simplifying assumption: fragment
matches are independent events. In theory (very simplified), if an amino acid in
the peptide has been protonated, then successive fragments should also contain
this protonation site and hence be detected. In reality, the protonation sites are
not the same for every copy of a peptide and a probabilistic approach should be
followed.

A natural improvement of L1 would be a model able to “reward” consecu-
tive matches, while tolerating occasional gaps. This can be achieved by using a
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Table 2. Performance comparison. Percentage of correct match scores that are
equal (ratio=1.0), 20% superior (1.2) or 40% superior (1.4) to the best of 10 000
random match scores, which are generated for each correct match. As the test
sets we use comprise numerous good matches, which are treated easily, we also
report performance on matches having a L1 score between 0 and 10. Such lines
are marked by an asterisk∗. Lines marked with B refer to the complementary
data set B.

Charge 1 Charge 2 Charge 3
Function 1.0 1.2 1.4 1.0 1.2 1.4 1.0 1.2 1.4

L1 75.0 56.2 42.1 97.4 94.7 90.4 96.4 94.4 91.9
Lconsec 73.3 54.8 40.8 97.8 95.0 91.1 97.8 96.2 93.9
Lintens 79.5 57.5 40.9 97.8 95.3 91.2 97.7 95.8 93.5
L1,class 73.2 57.0 46.5 97.6 95.2 91.9 96.4 94.7 91.8
LiClass 76.6 57.5 42.7 97.8 94.9 90.8 97.5 96.0 93.1

L∗
1 66.5 47.7 36.7 83.9 79.3 75.0 82.7 77.8 74.0

L∗
consec 73.8 55.6 42.5 85.5 79.3 75.7 89.0 84.8 82.4

L∗
intens 71.1 48.5 35.2 83.9 78.9 76.3 87.0 83.7 79.4

L∗
1,class 65.5 50.5 41.9 87.8 84.2 81.2 84.2 80.7 76.6

L∗
iClass 67.7 48.5 36.8 84.9 79.6 75.7 86.3 83.0 77.6

LB
1 98.4 96.5 93.7 98.7 94.7 85.9

LB
intens 99.9 99.8 99.4 99.9 99.9 99.3

LB∗
1 88.8 83.1 79.8 95.4 85.1 82.8

LB∗
intens 99.2 98.1 96.5 98.9 98.9 97.7

Markov chain (MC) or a hidden Markov model (HMM) [5]. In this perspective,
as observed in [3], it may be advantageous to unify several ion types in one gen-
eralized ion type to better capture the consecutive fragment match pattern. For
instance, one may want to consider ion types b, b-17, b-18, b++ as one general
ion type B.

We consider one MC and two HMMs, see Figure 1, and we denote by L2 the
log-likelihood ratio of models for consecutive matches. Given a choice of model
(MC or HMM), we define a new score function Lconsec = L1L2, L2 =

∏
θ∈S′ L2,θ,

where S′, the set of generalized ion types, and L2,θ, the corresponding log-
likelihood ratios.

For each peptide charge state, we test every combination of the models
hmmA, hmmJ and mcA both (Fig. 1) for the alternative (H1) and the null
hypotheses (H0), with orders n = 2, 3, 4, order(H0 model) ≤ order(H1 model).
That is 84 L2 models in total. We empirically set S′ to (z = 1) Y={y}, (z = 2)
B={b, b-18, b-17}, Y={y, y-18, y-17} and (z = 3) B={b, b++, b++-18, b++-17},
Y={y, y++, y++-18}. The parameters are learnt by expectation maximization
(Baum-Welch Algorithm, [5]).

We found no unique combination that would dominate the other ones. Sev-
eral combinations perform well and, as a general tendency, we have observed
that HMMs have a slight advantage for the H1-model, whereas MCs are suffi-
cient for the H0-model. The performance of the various combinations is simi-
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START
{s}

S1
{m,f}

S2
{m,f}

S3
{m,f}

S4
{m,f}

START
{s}

M1
{m}

M2
{m}

M3
{m}

M4
{m}

F1
{m,f}

F2
{m,f}

F3
{m,f}

Fig. 1. Consecutive fragment matches models. Two models aimed at capturing
successive fragment match patterns: hmmJ (top) and hmmA (bottom). Circles
represent states and the letters between curly brackets are the emitted symbols.
The structures shown correspond to what we name order 4. The symbol ’m’
emitted by a state Mi represents a correct fragment match, while the symbol
’m’ emitted by a state Fi represents a random fragment match (this is even
possible in a correct peptide match). ’f’ represents a theoretical fragment mass
not matched in the experimental data.The model mcA is identical to hmmA
except for the states Fi, which only emit the symbol ’f’. The structure of these
models is designed to allow for higher match probability after a first match has
been found. It is also designed for accepting a few missing matches in a longer
match sequence.

lar, therefore indicating the intrinsic importance of considering consecutive “no
matter” the exact method. The performance of the best combinations (z = 1:
hmmA(3)/mcA(2), z = 2: hmmA(4)/mcA(3), z = 3: hmmA(4)/hmmJ(2)) is
shown in Table 2. In every case, the transition and emission probabilities nicely
fit the model structures. For hmmJ(2), Y ions and charge 2, we find the tran-
sitions START to S1 (probability 1), S1 to S1 (0.59), S1 to S2 (0.41), S2 to S2

(0.88), S2 to S1 (0.12) and emissions S1 (’m’ with probability 0.05, ’f’ 0.95), S2

(’m’ 0.97, ’f’ 0.03).

3.6 Signal Intensity

It is well known among the mass spectrometry community that different ion
types have different typical signal intensity. In the case of tryptic peptides, C-
terminal ion types (x, y, z) naturally produce more intense peaks. This is due
to the basic tryptic cleavage sites (Lys, Arg), which facilitate protonation. [27]
and [8] even report fragment relative length intensity dependence.
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Here we use a simple model that orders the experimental peaks by intensity
and then split them into 5 bins. We obtain Lintens = L1L3, L3 =

∏
θ∈S′′ L3,θ, S′′,

a set of ion types, and L3,θ, the corresponding log-likelihood ratios. By selecting
ion types for their significance (relative entropy), we set S′′ to (z = 1) b, b-17,
b-18, y, y-17, y-18, (z = 2) b, y and (z = 3) b-17, b++, y, y-17, y++. The
performance of Lintens is shown in Table 2.

Although signal intensity improves performance, we expected a more spec-
tacular change. By further investigating, we found a direct explanation for this
disappointing result. Bruker peak detection software allows for exporting the n
most intense peaks above noise level into the peak list. At the time we generated
our main data set, n was set to 100. Ion types like b-18, b-18, y-17, y-18, b++,
y++ are generally important for scoring, although their signal is much less intense
than b or y signal [27]. Now, given that longer peptides statistically have more
protonation sites, it is clear that singly charged peptides are shorter. Therefore,
n = 100 is sufficient to cover most of the fragment masses. On the other hand,
it turns out that it is not sufficient to include enough fragment masses in the
model Lintens for z = 2, 3. We used the complementary data set B, which was
generated with n = 200. We denote by LB

intens the model Lintens trained and
tested on this set. The results shown in Table 2 nicely confirm the explanation.
Since the spectra in data set B were acquired on a different (better) instrument
and the samples were made of purified proteins (not a biological sample), we
repeat the performance of L1 (renamed LB

1 ) for reference purpose.
In theory, L3 includes L1 and one could expect that L3 performance is similar

to Lintens. In practice, L3 performance is very inferior to Lintens (less than 66%
for a ratio of 1 in Table 2), even on data set B. The reason is that the pattern
captured by L1 is more or less always available, whereas the intensity pattern is
more variable.

3.7 Amino Acid Dependence

Depending on their amino acid sequence, fragments may be more or less easily
detected. The actual dependence involves several phenomena (dissociation, ion-
ization). A model making use of the whole fragment sequence would contain too
many parameters. It is commonly accepted that the last amino acid of a frag-
ment (cleavage site) plays a significant role in the above mentioned phenomena.
We limit the number of model parameters by only considering the last amino
acid of a fragment and by grouping them in classes.

Basic score revisited. We designed an improved version of L1, which we
name L1,class, that uses parameters pθ(z, c), rθ(z, c), c a set of amino acids,
and whose performance is shown in Table 2. We empirically determined the
following amino acid classes (amino acids with similar probabilities): (N-tern
ions) ’AFHILMVWY’, ’CDEGNQST’, ’KPR’ and (C-term ions) ’HP’, ’AC-
FIMDEGLNQSTVWY’, ’KR’.

Consecutive fragment matches revisited. It is possible to extend
hmmA, hmmJ and mcA by replacing their states by one state per amino acid
class to separate amino acids that inhibit fragmentation from amino acids that
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favor fragmentation. As we prefer to stay with simple and robust models, we
have not implemented the amino acid dependent versions of hmmA, hmmJ and
mcA.

Signal intensity revisited. The model we introduced in Section 3.6 can
be extended as we did for L1,class, thus obtaining a model LiClass = L1L3,class.
The performance of the latter is reported in Table 2. LiClass performs much
worse than Lintens, what we explain by the fact that, although, the last amino
acid plays a major role in the fragment dissociation phenomena, it is no strong
relation with signal intensity. Signal intensity is more a consequence of the ion
type and the entire peptide sequence.

4 An Efficient Score

L1 is significantly improved by considering signal intensity. Consecutive fragment
matches as well as the amino acid dependent version of L1 also improve the
performance. Accordingly, we tested 4 combinations, which are C1 = Lintens,
C2 = L1,classL2, C3 = LintensL3 and C4 = L1,classL2L3, see Figure 2.

The receiver operating characteristics (ROC) curves of Figure 2 (top) are
obtained by setting a threshold on match p-values. The correct match p-values
are computed by searching the peptides of our data set against a database of
15 000 human proteins with variable Cys CAM and oxidation (Met, His, Trp)
modifications. The random match p-values are computed by searching against a
database of 15 000 random proteins with the same variable modifications and by
taking the best match. The random protein sequences were obtained by training
an order 3 MC on the human protein database. From Figure 2 we observe that
C4 is the best combination. C4 performance on data set and database [13] is
shown in Figure 2 (bottom).

5 Discussion

In this work we designed score functions by assuming the independence of many
statistical quantities. This choice allowed us to rapidly design efficient score
functions as naive Bayesian classifier. This can be seen as preparative work to
identify key contributors to successful peptide score functions in order to design
future models, comprising fewer simplifying assumptions. We found that ion type
probabilities, signal intensity and consecutive fragment matches are essential to a
peptide score function. We omitted one aspect of a match that may be pertinent:
the simultaneous detection of several ion types [29] (neutral loss, complementary
fragments). Peptide elution times may also provide additional information to
select correct matches [21]. New approaches based on the mobile proton model
are under development, see for instance [24], and it should be possible to combine
them with what we presented here.

The general applicability of modern stochastic score functions has not been
addressed here. In particular, two central questions might limit their value: the
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Fig. 2. ROC curves. Top. Score functions C1,2,3,4 on Bruker Esquire 3000 data.
C4 = L1,classL2L3 is the best score function at every charge state. At charge
states 2 and 3, if we fix a true positive rate of 95%, the improvement is 3.5-
fold (charge 2) or 5.8-fold (charge 3) over Mascot. At charge state 1, if we
accept a false positive rate of 5%, 4 times more peptides are identified. Bottom.
ThermoFinnigan LCQ data [13]. The improvement is 14-fold compared to [12].
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minimal size of the training set and performance robustness. These two points
are addressed in [15] and the results are positive.

We described a generic method for designing peptide score functions. We
applied it systematically to a large and diverse MS data set (140 000+ peptides)
to design a series of models of increasing complexity. By selecting an appropri-
ate combination of models, we obtained a very efficient score function, which,
given a true positive rate of 95%, has a false positive rate as low as 3% (doubly
charged peptides) or 2% (triply charged peptides). This is 3.5 to 5.8 times less
than Mascot 1.7. On data set [13] our false positive rate is less than 0.5%, which
is a 14-fold improvement compared to [12] (Figure 5). In [13] (Table 3), Sequest
performance is reported when used “traditionally”, i.e. by setting thresholds on
Xcorr and other quantities exported by Sequest. The smallest Sequest false posi-
tive rate reported (threshold set 4) is 2% with 59% true positive rate. We obtain
a corresponding false positive rate of 0.004%, which is 50 times less. The high-
est Sequest true positive rate reported (threshold set 2) is 78% with 9% false
positive rate. We obtain again a corresponding false positive rate of 0.004%,
which is 187 times less. Similar performance has been obtained on real samples
by using Bruker Esquire 3000+ instruments. Such low false positive rates, the
lowest ones ever reported to our best knowledge, combined with the competitive
price and robustness of ion trap instruments, provide a highly appropriate tech-
nology platform in the perspective of the many academic and private large-scale
proteomics projects currently emerging.
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24. F. Schütz, E. A. Kapp, J. E. Eddes, R. J. Simpson, T. P. Speed, and T. P. Speed.
Deriving statistical models for predicting fragment ion intensities. In Proc. 51st
Am. Soc. Mass Spectrom., Montreal, 2003.

25. J. K. Skilling. Improved methods of identifying peptides and protein by mass
spectrometry. European Patent Application EP 1,047,107,A2., 1999.

26. A. P. Snyder. Interpreting Protein Mass Spectra. Oxford University Press, Wash-
ington DC, 2000.

27. D. L. Tabb, L. L. Smith, L. A. Breci, V. H. Wysocki, D. Lin, and J. Yates. Statisti-
cal characterization of ion trap tandem mass spectra from doubly charged tryptic
peptides. Anal. Chem., 75:1155–1163, 2003.

28. J. Yates, J. K., and Eng. Identification of nucleotides, amino acids, or carbohy-
drates by mass spectrometry. United States Patent 6,017,693, 1994.

29. N. Zhang, R. Aebersold, and B. Schwikowski. ProbId: A probabilistic algorithm to
identify peptides through sequence database searching using tandem mass spectral
data. Proteomics, 2:1406–1412, 2002.


	Introduction
	Mass Spectrometry Concepts
	ESI Ion Trap Instruments
	Matching Theoretical and Experimental Spectra

	Statistical Modeling
	Data Set
	Theoretical Spectrum and Neutral Losses
	Comparing Peptide Score Functions
	A Basic Reference Score Function
	Consecutive Fragment Matches
	Signal Intensity
	Amino Acid Dependence

	An Efficient Score
	Discussion
	Acknowledgements

