
Generating Peptide Candidates from
Amino-Acid Sequence Databases for Protein

Identification via Mass Spectrometry

Nathan Edwards and Ross Lippert

Celera Genomics, 45 West Gude Drive, Rockville, MD
{Nathan.Edwards,Ross.Lippert}@Celera.Com

Abstract. Protein identification via mass spectrometry forms the foun-
dation of high-throughput proteomics. Tandem mass spectrometry, when
applied to a complex mixture of peptides, selects and fragments each pep-
tide to reveal its amino-acid sequence structure. The successful analysis
of such an experiment typically relies on amino-acid sequence databases
to provide a set of biologically relevant peptides to examine. A key sub-
problem, then, for amino-acid sequence database search engines that
analyze tandem mass spectra is to efficiently generate all the peptide
candidates from a sequence database with mass equal to one of a large
set of observed peptide masses. We demonstrate that to solve the prob-
lem efficiently, we must deal with substring redundancy in the amino-acid
sequence database and focus our attention on looking up the observed
peptide masses quickly. We show that it is possible, with some prepro-
cessing and memory overhead, to solve the peptide candidate generation
problem in time asymptotically proportional to the size of the sequence
database and the number of peptide candidates output.

1 Introduction

Reliable methods for identifying proteins form the foundation of proteomics, the
large scale study of expressed proteins. Of the available technologies for pro-
tein identification, mass spectrometry is the most suitable for high-throughput
automation and analysis.

Tandem mass spectrometry, in which peptides are selected and fragmented,
reveals peptides’ amino-acid sequence structure. In a typical high-throughput
setting, a complex mixture of unknown proteins is cut into peptides using a
digestion enzyme such as trypsin; fractionated into reduced complexity samples
on the basis of some physical or chemical property such as hydrophobicity; and
then a tandem mass spectrum is taken for all the observed peptides in each
fraction. The end result of such an experiment is a set of a few hundred to a
few thousand tandem mass spectra, each of which represents a peptide of about
6-20 amino acid residues. Typically, amino-acid sequences of 8-10 residues carry
sufficient information content to determine the protein from which the peptide
is derived, at least up to significant homology. This experimental protocol can

R. Guigó and D. Gusfield (Eds.): WABI 2002, LNCS 2452, pp. 68–81, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Generating Peptide Candidates from Amino-Acid Sequence Databases 69

reliably identify hundreds of proteins from a complex mixture in a couple of
hours of instrument time.

The traditional approach to automated protein identification using mass
spectrometry is not nearly as suited to a high-throughput environment. Pep-
tide mass fingerprinting, see Pappin, Hojrup, and Bleasby [11], James et. al. [8],
Cottrell and Sutton [4], and Pappin [10], considers the mass spectrum generated
by the (typically tryptic) peptides of a single protein. The mass of each peptide,
by itself, carries little information content about the original protein, it is only
by the simultaneous observation of the masses of many peptides from a protein
that reliable protein identification can be carried out. Furthermore, if peptides
from many different proteins are observed in the spectrum, the task of reliably
determining which peptide ions belong to the same protein becomes near impos-
sible. This means that significant wet lab work must be done in order to reduce
the number of proteins in each fraction to as near to one as possible, which
ultimately makes peptide mass fingerprinting unsuitable for high-throughput
protein identification.

The analysis of each tandem mass spectrum can be done in a variety of ways.
Given a good quality spectrum and a peptide that fragments nicely, the amino-
acid sequence of the peptide can often be determined de novo, merely by looking
at the mass differences between peaks in the spectrum. Many algorithmic ap-
proaches have been proposed for de novo tandem mass spectrum interpretation,
see Taylor and Johnson [14], Dancik et. al. [5], Pevzner, Dancik and Tang [13],
and Chen et. al. [2] for some examples. In reality, however, in a high-throughput
setting, the number of spectra that can be reliably analyzed de novo is small. The
most reliable approach for analyzing high-throughput tandem mass spectra for
protein identification uses amino-acid sequence databases to suggest peptide can-
didates which are then ranked according to how well they explain the observed
spectrum. A number of papers have been published describing tandem mass
spectra database search engines and peptide candidate ranking schemes. Some
of these approaches have even been commercialized. The first widely adopted
program for tandem mass spectra identification via sequence database search
was SEQUEST, based on work by Eng, McCormack and Yates [6]. Another suc-
cessful commercial product, Mascot, is based on work by Perkins et. al. [12].
Bafna and Edwards [1] published a probability based model for scoring and
ranking peptide candidates that could be tuned to the peptide fragmentation
propensities of different mass spectrometry technologies. Unfortunately, all of
this work focuses primarily on determining the correct peptide candidate from
among the possibilities suggested by the sequence database. In this paper, we
address the problem at the core of all tandem mass spectrum identification se-
quence search engines, enumerating all appropriate peptide candidates from an
amino-acid sequence database efficiently. For each tandem mass spectrum, we
require peptide candidates that match the mass of the peptide that was selected
for fragmentation.

70 N. Edwards and R. Lippert

2 Generating Peptide Candidates

2.1 Problem Formulation and Notation

Peptide Candidate Generation with Integer Weights [PCG(Int)].
Given a string σ of length n over an alphabet A of size m; a positive integer
mass µ(a) for each a ∈ A; and k integer mass queries M1, . . . , Mk, enumerate
all (distinct) pairs (i, ω), where 1 ≤ i ≤ k and ω is a substring of σ, such that

|ω|∑
j=1

µ(ωj) = Mi.

For convenience, we denote the maximum relevant substring mass by Mmax =
maxi Mi and the minimum relevant substring mass by Mmin = mini Mi. Further,
since the set of query masses may contain repeated values, we define Rmax to be
the maximum number of repeats.

While we will concentrate primarily on the integer mass version of the peptide
candidate generation problem, we must not lose sight of the real mass version
which we must eventually implement. The real mass version of the problem
defines real masses for each alphabet symbol and supports real query masses
with lower and upper mass tolerances.

Peptide Candidate Generation with Real Weights [PCG(Real)]. Given
a string σ of length n over an alphabet A of size m; a positive real mass µ(a) for
each a ∈ A; and k positive real mass queries with positive lower and upper tol-
erances (M1, l1, u1), . . . , (Mk, lk, uk), enumerate all (distinct) pairs (i, ω), where
1 ≤ i ≤ k and ω is a substring of σ, such that

Mi − li ≤
|ω|∑
j=1

µ(ωj) ≤ Mi + ui.

We define Mmax and Mmin to be the minimum and maximum relevant substring
mass, Mmax = maxi(Mi + ui) and Mmin = mini(Mi − li) and define Omax to be
the maximum number of [Mi − li, Mi + ui] intervals to overlap any mass.

2.2 Application to Peptide Identification
via Tandem Mass Spectrometry

In order to focus our analysis of different algorithms for generating peptide can-
didates, we first describe some of the issues that need be resolved before a peptide
candidate generation technique can be used as part of a peptide identification
amino-acid sequence search engine.

First, most amino-acid sequence databases do not consist of a single sequence
of amino-acids, they instead contain many distinct amino-acid sequences, repre-
senting many proteins. Our peptide candidates should not straddle amino-acid

Generating Peptide Candidates from Amino-Acid Sequence Databases 71

sequence boundaries. This is easily dealt with by introducing an addition symbol
to the alphabet A with a mass guaranteed to be larger than the biggest query.

We usually require significantly more information about each peptide can-
didate than is represented by its sequence alone. A peptide candidate’s protein
context minimally consists of a reference, such as an accession number, to the
sequence database entry containing it, and its position within the sequence. Of-
ten, the protein context also contains flanking residues, for checking enzymatic
digest consistency quickly, and taxonomy information, for restricting candidates
to a species of interest.

Since our experimental protocol cuts each protein with a digestion enzyme,
we usually require our peptide candidates have one or both ends consistent with
the putative digest cut sites. Trypsin, very commonly used in mass spectrometry
applications, cuts proteins immediately after a lysine (K) or arginine (R) unless
the next residue is a proline (P). In order to determine whether a peptide can-
didate is consistent with trypsin, for example, we must use the protein context
to examine the symbols before and after a peptide candidate.

If we will always require that both ends of the peptide candidate be consistent
with the enzymatic digest, we can improve the performance of any algorithm for
the peptide candidate generation problem significantly. However, in practice, we
have observed that a significant number of the tandem mass spectra generated in
the high throughput setting do not have enzymatic digest consistent endpoints,
and requiring this property of our peptide candidates significantly affects our
ability to successfully interpret many spectra. As such, we currently do not
impose this constraint at the algorithmic level, instead we filter out candidates
without digestion consistent endpoints at candidate generation time. Section 6
deals with this issue further.

Peptide redundancy must be carefully considered too. It does us no good to
score the same peptide candidate against a spectrum multiple times, but if a
peptide scores well, we must be able list all the proteins that it occurs in. If our
algorithm does not explicitly eliminate redundant peptide candidates, we can
choose to score them multiple times, or store all scored candidates in some data-
structure and only score candidates the first time they are observed. Section 4
deals with this issue further.

Post-translational modifications provide yet another consideration that af-
fects algorithmic implementation decisions. If we permit the online specification
of the amino-acid mass table in order to support the generation of peptide can-
didates with a particular post-translational modification, we must discard any
algorithm which precomputes peptide candidate masses, unless we can somehow
correct for amino-acids with modified masses.

Modeling post-translational modifications becomes more difficult when we
must generate peptide candidates in which some amino-acid symbols have mul-
tiple masses. In this setting, we can still use the peptide candidate generation
formulation above but we must use additional query masses and do additional
checks on the generated candidates. For each tandem mass spectrum, we gen-
erate a set of mass queries that correct for the presence of a certain number of

72 N. Edwards and R. Lippert

residues being translated to a particular modified amino-acid, and check each
returned candidate-query mass pair to ensure that the required number of am-
biguous amino-acid symbols is present.

2.3 Implications for Peptide Candidate Generation

We consider amino-acid sequence databases of a few megabytes to a few gigabytes
of sequence, over an alphabet of size 20. The alphabet is small enough that we
can look up the mass table for each symbol in the alphabet in constant time.

A typical set of tandem mass spectra from a single high throughput run
consists of hundreds to thousands of spectra, so we expect hundreds to tens of
thousands of distinct query masses. Furthermore, these query masses are typ-
ically constrained between 600-3000 Daltons with a 2 Dalton tolerance on ac-
ceptable peptide candidates. A 2 Dalton tolerance is typically necessary since
mass spectrometers select ions for further fragmentation with much less accu-
racy than they measure the mass of the same ions, and we must consider any
peptide candidate that might have been selected, not only those that have been
measured. For our peptide candidate generation problem, this implies that the
query masses occupy much of the feasible mass range. The importance of this
consideration will become clear in Section 5.

We consider the amino-acid sequence database to be provided offline, and
that it may be pre-processed at will, the cost amortized over many identification
searches. On the other hand, we assume that the alphabet mass function and
the query masses are provided only at runtime and any preprocessing based on
weights must be accounted for in the algorithm run time.

3 Simple Algorithms
3.1 Linear Scan
Suppose initially that we have a single query mass, M . Finding all substrings of
σ with weight M involves a simple linear scan. The algorithm maintains indices
b and e for the beginning and end of the current substring and accumulates the
current substring mass in M̂ . If the current mass is less than M , e is incremented
and M̂ increased. If the current mass is greater than M̂ , b is incremented and M̂
decreased. If the current mass equals M , then σb...e is output. See Algorithm 1
for pseudo-code.

This algorithm outputs all peptide candidates that match the query mass in
O(n) time. Linear Scan requires no preprocessing and requires only the string
itself be stored in memory. The recent work of Cieliebak, Erlebach, Lipták, Stoye,
and Welzl [3] demonstrates how to generalize Linear Scan by creating blocks
of contiguous alphabet symbols and changing the pointers b and e in block size
increments.

3.2 Sequential Linear Scan
The Sequential Linear Scan algorithm for the peptide candidate generation
problem merely calls Linear Scan for each query mass Mi, i = 1, . . . , k. Se-
quential Linear Scan requires no preprocessing of the string and requires

Generating Peptide Candidates from Amino-Acid Sequence Databases 73

Algorithm 1 Linear Scan

b← 1, e← 0, M̂ ← 0.
while e < n or M̂ ≥M do

if M̂ = M then
Output σb...e.

if M̂ < M and e < n then
e← e + 1, M̂ ← M̂ + µ(σe).

else {M̂ ≥M}
M̂ ← M̂ − µ(σb), b← b + 1.

memory only to store the sequence data and query masses. The algorithm takes
O(nk) time to enumerate all peptide candidates that match the k query masses.
The algorithm not only outputs redundant peptide candidates, it computes their
mass from scratch every time it encounters them. On the other hand, the algo-
rithm can easily keep track of protein context information as it scans the sequence
database.

3.3 Simultaneous Linear Scan

Unlike Sequential Linear Scan, Simultaneous Linear Scan solves the pep-
tide candidate generation problem with a single linear scan of the sequence
database. For every peptide candidate start position, we generate all candidates
with mass between the smallest and largest query masses, and check, for each
one, whether or not there is a query mass that it matches. Assuming positive
symbol masses and query masses bounded above by some constant, there are at
most L candidates that must be considered at each start position. If we pre-sort
the query masses, collapsing identical queries into a list associated with a single
table entry, we can look up all queries corresponding to a particular substring
mass in O(Rmax log k) time. Therefore, we can crudely estimate the running time
of Simultaneous Linear Scan as O(k log k + nLRmax log k).

Theoretically, while it is possible to construct an input for the peptide candi-
date generation problem that requires the consideration of this many candidates,
such an input will never occur in practice. Assuming typical amino-acid frequen-
cies and a 3000 Dalton maximum query, the average number of candidates that
must be considered at each start position, or Lave, is about 27, much less than
the worst case L of 54. Table 1(a) provides Lave for a variety of publicly available
sequence databases. For the case when enzymatic digest consistent endpoints are
required, many fewer candidates need to be generated. Table 1(b) gives Lave for
tryptic peptide candidates.

In order to take advantage of this, Simultaneous Linear Scan must ex-
amine only the peptide candidates with masses up to the maximum query mass
Mmax. Algorithm 2 implements Simultaneous Linear Scan, achieving a run-
ning time bound of O(k log k + nLaveRmax log k). Clearly, as k gets large, this
approach will do much better than Sequential Linear Scan.

74 N. Edwards and R. Lippert

Table 1. Average (Maximum) number of (a) candidates (b) tryptic candidates per
start position for various values of Mmax.

Sequence Database 500 Da 1000 Da 2000 Da 3000 Da

SwissPROT 4.491(8) 9.008(17) 18.007(32) 27.010(48)
(a) TrEMBL 4.492(8) 9.004(17) 18.006(33) 27.010(49)

GenPept 4.491(8) 9.004(17) 18.005(33) 27.006(49)

SwissPROT 1.443(4) 2.046(7) 3.137(12) 4.204(18)
(b) TrEMBL 1.418(4) 2.022(7) 3.066(14) 4.189(19)

GenPept 1.427(4) 2.036(7) 3.101(14) 4.195(22)

Algorithm 2 Simultaneous Linear Scan
Sort the query masses M1, . . . , Mk.
b← 1, e← 0, M̂ ← 0.
while b ≤ n do

while M̂ ≤Mmax and e < n do
e← e + 1, M̂ ← M̂ + µ(σe).
Q← QueryLookup(M̂).
Output (i, σb...e) for each i ∈ Q.

b← b + 1, e← b− 1, M̂ ← 0.

Like Sequential Linear Scan, Simultaneous Linear Scan does no pre-
processing of the amino-acid sequence database and requires no additional mem-
ory above that required for the sequence and the queries. Simultaneous Linear
Scan generates redundant peptide candidates and can easily provide protein
context for each peptide candidates.

4 Redundant Candidate Elimination

Typical amino-acid sequence databases, particularly those that combine se-
quences from different sources, contain some entries with identical sequences.
Fortunately, these redundant entries can be efficiently eliminated by computing
a suitable hash on each sequence. Substring redundancy, however, is not as easy
to deal with. When all peptide candidates of mass between 600 and 4000 Dal-
tons are enumerated from the publicly available GenPept amino-acid sequence
database, over 60% of the peptide candidates output have the same sequence
as a candidate already seen. We will denote the compression in the number of
candidates that must be considered when this redundancy is eliminated by the
substring density, ρ. Figure 1 plots the substring density of various publicly avail-
able amino-acid sequence databases for candidates (and tryptic candidates) with
mass between 600 and Mmax, where Mmax varies from 610 to 4000 Daltons. No-
tice that ρ is quite flat for large Mmax, suggesting substring density significantly
less than 1 is not merely an artifact of the length of the substrings considered.

Notice also that the carefully curated SwissPROT sequence database ex-
hibits much greater substring density than the others. This probably reflects

Generating Peptide Candidates from Amino-Acid Sequence Databases 75

GenPept

TrEMBL

SwissPROT
0.8

1

500 1000 1500 2000 2500

0.6

3000
0

3500 4000

0.4

0.2

ρ

Mmax

Fig. 1. Substring density of all candidates (solid line) and tryptic candidates (dashed
line) with mass between 600 and Mmax Daltons.

the curation policy of SwissPROT to collapse polymorphic and variant forms
of the same protein to a single entry with feature annotations. If each variant
form of a protein was a distinct entry in the database, then its substring den-
sity would decrease significantly. On the other hand, GenPept, which contains
protein sequence data from many sources and is not hand curated, has much
lower substring density. We claim that substring density is not merely inversely
proportional to database size, but that it is increasingly difficult to find appro-
priate ways to collapse similar, but not identical, entries in ever larger sequence
databases.

4.1 Suffix Tree Traversal

Suffix trees provide a compact representation of all distinct substrings of a string,
effectively eliminating redundant peptide candidates. We discuss the salient
properties of suffix trees here, see Gusfield [7] for a comprehensive introduc-
tion. Suffix trees can be built in time and space linear in the string length.
Once built, all distinct substrings are represented by some path from the root of
the suffix tree. Having constructed a suffix tree representation of our sequence
database, a depth first traversal of the suffix tree that examines substrings on
paths from the root with mass at most the maximum query mass generates all
sequence distinct peptide candidates of our sequence database.

As the depth first traversal of the suffix tree proceeds, each candidate sub-
string must be checked to see whether it corresponds to a query mass. As before,
we bound the worst case performance of query mass lookup by O(Rmax log k).
This results in a running time bound of O(k log k + ρnLaveRmax log k).

The additional memory overhead of the suffix tree is the only downside of this
approach. A naive implementation of the suffix tree data-structure can require as
much as 24n additional memory for a string of length n. However, as suffix trees
have found application in almost every aspect of exact string matching, a great

76 N. Edwards and R. Lippert

5

10

15

20

1000 1500
0

2000 2500 3000 3500 4000

N
um

be
r

of
sp

ec
tr

a

Mass

Fig. 2. Overlap plot for 1493 query masses from Finnigan LCQ tandem mass spec-
trometry experiment.

deal of effort has been made to find more compact representations. For example,
Kurtz [9] claims a memory overhead of approximately 8n for various biological
databases. This degree of compression can also be achieved, in our experience,
by using a suffix array data-structure, which represents the same information as
a suffix tree, but in a typically more compact form. Again, see Gusfield [7] for an
introduction. In theory, a depth first traversal of a suffix array should be quite a
bit more expensive than for a suffix tree, but in our experience, the linear scan
through the suffix array that is necessary to implement the depth first traversal
costs little more than pointer following in the suffix tree.

We note that using a suffix tree traversal for peptide candidate generation
can make the protein context of peptide candidates more expensive to compute,
particularly for context upstream of the candidate, necessary for determining if
the peptide candidate is consistent with an enzymatic digest.

5 Query Lookup

Whether we consider the Simultaneous Linear Scan or Suffix Tree Traver-
sal algorithm for peptide candidate generation, it should be clear that as the
number of distinct query masses k gets large, our running time depends criti-
cally on the query mass lookup time. Once k gets too big for the Sequential
Linear Scan algorithm to be appropriate, effective algorithms for the peptide
candidate generation problem must no longer focus on the string scanning sub-
problem, but instead on the query mass lookup subproblem. Figure 2 plots the
degree of overlap of a typical set of query mass intervals derived from a Finni-
gan LCQ mass spectrometer run containing 1493 tandem mass spectra. Notice
the wide range of candidate masses that must be considered by the candidate
generation algorithm.

We can obtain an O(1) query lookup time per output peptide candidate
by constructing a lookup table, indexed by the set of all possible candidate
masses, containing the corresponding query mass indices. This is feasible for

Generating Peptide Candidates from Amino-Acid Sequence Databases 77

Algorithm 3 Query Mass Lookup Table: Construction: Real Case
δ ← mini(li + ui).
allocate and initialize a lookup table of size N =

⌊
Mmax

δ

⌋
+ 1.

for all query masses i do
for all j =

⌊
Mi−li

δ

⌋
, . . . ,

⌊
Mi+ui

δ

⌋
do

if jδ ≤Mi − li < (j + 1)δ then
T [j].L← i

else if jδ ≤Mi + ui < (j + 1)δ then
T [j].U ← i

else {Mi − li < jδ and Mi + ui ≥ (j + 1)δ}
T [j].O ← i

for all j = 0, . . . , N − 1 do
sort the elements i of T [j].L in increasing Mi − li order.
sort the elements i of T [j].U in decreasing Mi + ui order.

Algorithm 4 Query Mass Lookup Table: Lookup: Real Case

input query mass M̂ .

j ←
⌊

M̂
δ

⌋
.

output i for each i ∈ T [j].O.
output i in order from T [j].L until Mi − li > M̂ .
output i in order from T [j].U until Mi + ui < M̂ .

suitably small integer query masses, as the resulting data-structure will have
size O(Mmax + k).

We can readily adapt this approach to the real mass case. Algorithm 3 de-
scribes the procedure for building the lookup table. Having selected the dis-
cretization factor δ for the real masses to match the smallest query mass toler-
ance and allocating a table of the appropriate size, we iterate through the query
masses to populate the table. For each query mass, we determine the relevant
table entries that represent intervals that intersect with the query mass tolerance
interval. The query mass intervals that intersect the interval J = [jδ, (j + 1)δ)
represented by a table entry j do so in one of three ways: the lower endpoint
falls inside J , in which case the query mass index is stored in T [j].L; the upper
endpoint falls inside J , in which case the query mass index is stored in T [j].U ;
or the query mass interval completely overlaps J , in which case the query mass
index is stored in T [j].O. The choice of δ ensures that no query mass interval
is properly contained in J . Once all the table entries are populated, then for
all table entries j, the query mass indices i ∈ T [j].L are sorted in increasing
Mi − li order and similarly, the query mass indices i ∈ T [j].U are sorted in
decreasing Mi + ui order. The resulting lookup table has size bounded above
by O(Mmax/δ + k maxi(li + ui)/δ) and can be constructed in time bounded by
O(Mmax/δ + k maxi(li + ui)/δ + (Mmax/δ)Omax log Omax).

For typical values, building this table is quite feasible. Mmax is usually be-
tween 2000 and 4000 Daltons, while δ is usually about 2 Daltons. Even tens of

78 N. Edwards and R. Lippert

thousands of query masses spread over 1000-2000 bins will not cause significant
memory or construction time problems. Once built, the cost in memory and
construction time is quickly amortized by the O(1) query lookup time.

The bottom line is that it is possible to solve the peptide candidate generation
problem (with integer masses) in time O(Mmax + k + ρnLaveRmax) and that it
is practical to implement this approach for real query masses. Note that the
number of peptide candidates output by any correct algorithm is bounded above
by ρnLaveRmax. This bound is quite tight, particularly when Rmax is close to
its lower bound of k/Mmax. Ultimately, this means that we cannot expect to do
much better than this running time bound when building the query lookup table
is feasible.

6 Enzymatic Digest Considerations

Enzymatic digest considerations offer both a challenge and an opportunity for
peptide candidate generation. Enzymatic digest considerations present a chal-
lenge, depending on the underlying scan or traversal, because obtaining the
necessary protein context in order to check whether a peptide candidate is con-
sistent with a particular enzymatic digest may not be trivial, particularly during
a suffix tree based traversal. On the other hand, enzymatic digest considerations
present an opportunity, because digest constraints significantly reduce the num-
ber of peptide candidates that need to be examined. With careful consideration
for the underlying data-structures, it is possible to enumerate peptide candidates
that satisfy enzymatic digest constraints at no additional cost, which means that
the reduction in the number of candidates output directly impacts the algorithm
run-time.

First, we consider how to manage enzymatic digest constraints for the linear
scan algorithms. Notice first that since the motifs for enzymatic digestion are
typically simple and short, we can find all putative digestion sites in O(n) time.
If both ends of the peptide candidates are constrained to be consistent with the
enzymatic digest, then the begin and end pointers of Algorithms 1 and 2 can
skip from one putative site to the next. Further, if we consider the case when
only a small number of missed digestion sites are permitted, we can avoid the
generation of candidates with moderate mass, but many missed digestion sites.
If only one end of the peptide candidate is required to be consistent with the
digest, we must use two passes through the sequence. The first pass constrains
the left pointer to putative digest sites, and the second pass constrains the right
pointer to putative digest sites and the left pointer to non-digest sites.

Next, we consider how to manage enzymatic digest consistency for the suffix
tree based algorithms. Unlike the linear scan algorithms, peptide candidate gen-
eration is asymmetric with respect to the ends of the candidate. In fact, there
is little we can do within the suffix tree traversal to reduce the amount of work
that needs to be done to generate a new peptide candidate in which the right
endpoint is consistent with the enzymatic digest. We must still explore all the
children of any node we visit, as long as the current peptide candidate mass is

Generating Peptide Candidates from Amino-Acid Sequence Databases 79

Table 2. total time (s)/number of calls (×109)/time per call (×10−6s) of the traversal
subroutines.

(µsec) generation interval search string scan

Suffix tree 237/1.62/0.146 548/2.90/0.189 115/1.33/0.086
Sim. linear scan 228/2.02/0.112 844/3.53/0.239 87/1.55/0.056

less than the maximum query mass. We can avoid query mass lookups, just as
we did for the linear scans, by checking each subsequence with a valid mass for
an digest consistent right endpoint before we lookup the query masses. On the
other hand, constraining the left endpoint of all candidates to be consistent with
the digest can restrict the suffix tree traversal algorithms to a subtree of the
suffix tree. In order to accomplish this, we must consider a peptide candidate to
consist of the protein context to the left of the candidate prepended to the pep-
tide candidate proper. The non-candidate symbols prepended to the candidate
do not contribute to the mass of the candidate, but permit us to look only at
those subtrees of the root that begin with a digest consistent motif.

7 Computational Observations

We implemented solutions with a suffix tree and a simultaneous linear scan as
described in Algorithm 2. Profiles of these implementations give an estimate
to the relative constant factors associated with string traversal versus interval
search costs. We ran our implementations against the 1493 sample query masses
on the SwissPROT database.

Although we have shown that O(1) lookup of intervals is possible, we have
used a skip list to store the intervals in both examples. As the average interval
coverage is not large in this example, we thought this would suffice.

Our implementations were compiled in DEC Alpha EV6.7 processors (500
MHz) with the native C++ compiler, CXX (with the option -O4). Timing was
done with gprof. We have aggregated the timings for the interval traversal
routines, the string traversal routines, and the candidate generation function
which calls them alternately.

Table 2 demonstrates that the largest fraction of the cost (by number of calls
or time) is spent in the interval lookup, examining about 2 intervals per string
search, as Figure 2 suggests. The extra time cost from the redundant string
traversals in the simultaneous linear scan implementation is compensated by the
speed per-call coming from a simpler scanning routine. The extra interval search
time for the simultaneous linear scan is likely due to the increased time spent
re-traversing short intervals.

8 Conclusion

We have identified and formulated a key subproblem, the peptide candidate
generation problem, that must be solved in order to identify proteins via tandem

80 N. Edwards and R. Lippert

mass spectrometry and amino-acid sequence database search. We have outlined
the context in which any solution to the peptide candidate generation problem
must operate and carefully examined how this context influences the classic
algorithmic tradeoffs of time and space.

We have identified a key property of amino-acid sequence databases, sub-
string density, that quantifies the unnecessary peptide candidates output by a
linear scan of the sequence database. We have further proposed the use of the suf-
fix array as a compact representation of all substrings of the sequence database
that eliminates candidate redundancy.

We have also demonstrated that as the number of query masses increases,
query mass lookup time becomes more significant than sequence database scan
time. We proposed a constant time query lookup algorithm based on preprocess-
ing the query masses to form a lookup table, and showed that this technique is
quite feasible in practice.

Our results for the peptide candidate generation problem depend heavily on
our empirical observations about the nature of the problem instances we see
every day. We need to obtain better worst case bounds for this problem to make
our performance less sensitive to less common extreme instances. We also need
to do a comprehensive empirical study to more carefully determine the scenarios
in which each of the algorithms identified is the method of choice.

References

1. V. Bafna and N. Edwards. Scope: A probabilistic model for scoring tandem mass
spectra against a peptide database. Bioinformatics, 17(Suppl. 1):S13–S21, 2001.

2. T. Chen, M. Kao, M. Tepel, J. Rush, and G. Church. A dynamic programming
approach to de novo peptide sequencing via tandem mass spectrometry. In ACM-
SIAM Symposium on Discrete Algorithms, 2000.

3. M. Cieliebak, T. Erlebach, S. Lipták, J. Stoye, and E. Welzl. Algorithmic com-
plexity of protein identification: Combinatorics of weighted strings. Submitted to
Discrete Applied Mathematics special issue on Combinatorics of Searching, Sort-
ing, and Coding., 2002.

4. J. Cottrell and C. Sutton. The identification of electrophoretically separated pro-
teins by peptide mass fingerprinting. Methods in Molecular Biology, 61:67–82,
1996.

5. V. Dancik, T. Addona, K. Clauser, J. Vath, and P. Pevzner. De novo peptide
sequencing via tandem mass spectrometry. Journal of Computational Biology,
6:327–342, 1999.

6. J. Eng, A. McCormack, and J. Yates. An approach to correlate tandem mass
spectral data of peptides with amino acid sequences in a protein database. Journal
of American Society of Mass Spectrometry, 5:976–989, 1994.

7. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

8. P. James, M. Quadroni, E. Carafoli, and G. Gonnet. Protein identification in dna
databases by peptide mass fingerprinting. Protein Science, 3(8):1347–1350, 1994.

9. S. Kurtz. Reducing the space requirement of suffix trees. Software–Practice and
Experience, 29(13):1149–1171, 1999.

Generating Peptide Candidates from Amino-Acid Sequence Databases 81

10. D. Pappin. Peptide mass fingerprinting using maldi-tof mass spectrometry. Meth-
ods in Molecular Biology, 64:165–173, 1997.

11. D. Pappin, P. Hojrup, and A. Bleasby. Rapid identification of proteins by peptide-
mass fingerprinting. Currents in Biology, 3(6):327–332, 1993.

12. D. Perkins, D. Pappin, D. Creasy, and J. Cottrell. Probability-based protein iden-
tification by searching sequence databases using mass spectrometry data. Elec-
trophoresis, 20(18):3551–3567, 1997.

13. P. Pevzner, V. Dancik, and C. Tang. Mutation-tolerant protein identification by
mass-spectrometry. In R. Shamir, S. Miyano, S. Istrail, P. Pevzner, and M. Water-
man, editors, International Conference on Computational Molecular Biology (RE-
COMB), pages 231–236. ACM Press, 2000.

14. J. Taylor and R. Johnson. Sequence database searches via de novo peptide se-
quencing by mass spectrometry. Rapid Communications in Mass Spectrometry,
11:1067–1075, 1997.

	1 Introduction
	2 Generating Peptide Candidates
	2.1 Problem Formulation and Notation
	2.2 Application to Peptide Identification via Tandem Mass Spectrometry
	2.3 Implications for Peptide Candidate Generation

	3 Simple Algorithms
	3.1 Linear Scan
	3.2 Sequential Linear Scan
	3.3 Simultaneous Linear Scan

	4 Redundant Candidate Elimination
	4.1 Suffix Tree Traversal

	5 Query Lookup
	6 Enzymatic Digest Considerations
	7 Computational Observations
	8 Conclusion
	References

