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We propose a comprehensive pattern recognition procedure that
will achieve best discrimination between two or more sets of
subjects with data in the same coordinate system. Applying the
procedure to MS data of proteomic analysis of serum from ovarian
cancer patients and serum from cancer-free individuals in the Food
and Drug Administration�National Cancer Institute Clinical Pro-
teomics Database, we have achieved perfect discrimination (100%
sensitivity, 100% specificity) of patients with ovarian cancer, in-
cluding early-stage disease, from normal controls for two inde-
pendent sets of data. Our procedure identifies the best subset of
proteomic biomarkers for optimal discrimination between the
groups and appears to have higher discriminatory power than
other methods reported to date. For large-scale screening for
diseases of relatively low prevalence such as ovarian cancer, almost
perfect specificity and sensitivity of the detection system is critical
to avoid unmanageably high numbers of false-positive cases.

discriminant analysis � random field � resampling � statgram

Each year in the United States an estimated 25,000 women are
diagnosed with ovarian cancer, and �14,500 women die from

the disease (1). Ovarian cancer is insidious, producing few
symptoms until it has spread regionally beyond complete surgical
removal, accounting for an overall cure rate of only 35%. When
ovarian cancer is diagnosed at an early stage, however, the cure
rate is 90% or better with surgery alone (2–6). An effective
screening program for early-stage ovarian cancer has been
elusive because of the relatively low disease prevalence and the
lack of a highly specific screening test (7, 8).

Petricoin et al. (9, 10) recently reported that mass spectra of
serum of ovarian cancer patients when interrogated by a pro-
prietary bioinformatics tool can be shown to contain patterns of
molecules diagnostic of even early-stage disease. That group and
others have applied this approach to the detection of proteomic
profiles in serum that distinguish not only ovarian cancer but also
prostate (11) and breast cancer (12) patients from those without
cancer. The availability of a relatively inexpensive, accurate
blood test for the early diagnosis of most, if not all, cancers has
generated great excitement among scientists and the public.

The key to development of such assays is the ability to detect
a few marker molecules, assumed to be proteins, that are
differentially expressed in the sera of cancer patients. However,
the variety and amounts of molecules circulating in the blood at
any given moment may differ substantially from one individual
to another. The challenge in proteomic diagnosis is to find a
method for detecting unique markers amid thousands of ele-
ments in the complex milieu of serum or other body fluid.

Most serum protein mass spectrum data have been generated
by using the Ciphergen Biosystems (Fremont, CA) ProteinChip
array surface-enhanced laser desorption ionization–time-of-
f light (SELDI-TOF) MS system (13–16). The underlying prin-
ciple in SELDI is surface-enhanced affinity capture through the
use of specific probe surfaces. Once captured on the SELDI
protein chip array, proteins are detected by TOF MS.

The great advantage of MS over other technologies for global
detection and monitoring of subtle changes in cell function is the

ability to measure rapidly and inexpensively thousands of ele-
ments in a few microliters of serum or plasma. Disease processes
that result from altered genes, such as cancer, produce altered
protein products that circulate in the blood as polypeptides of
varying size. Although mass spectrometric patterns of complex
fluids such as serum defy visual analysis, computational ap-
proaches can distinguish subtle differences in patterns from
affected individuals compared with unaffected individuals.

Several statistical analytical tools have been developed to
analyze mass spectra. Two routines have been used predomi-
nantly to analyze serum proteomic data: PROTEOME QUEST
(Correlogic Systems, Bethesda) and PROPEAK (3Z Informatics,
Mount Pleasant, SC). The PROTEOME QUEST system selects
protein biomarkers via a genetic algorithm (17) using a random
window approach. The classification is then done by using a
self-organizing map (18, 19). The PROPEAK system implements
the unified maximum separability analysis procedure that is
essentially a variation of the traditional canonical discriminant
analysis (12).

We have developed a statistical algorithmic routine that sifts
through the entire spectra and selects, using the random field
theory, all biomarkers that are significantly different between
affected and unaffected subjects in expression levels. The best
discriminating pattern is then chosen among all significant
biomarkers by using the best-subset discriminant analysis
method. Analysis of two independent sets of serum proteomic
data from ovarian cancer patients and individuals believed to be
free of ovarian cancer, available online (http:��clinicalproteomics.
steem.com) from the National Institutes of Health and Food and
Drug Administration Clinical Proteomics Program Databank,
suggests that our statistical routine is highly useful for detection
of cancer-specific markers amid massive mass spectral data.

Materials and Methods
Statistical Algorithm. Our statistical algorithmic routine is a
combination of the following sequential steps.

Data Preprocessing. This includes standardization for relative
spectrum and smoothing via Gaussian filters, performed on each
individual spectrum.

Sampling. For discriminant purposes, a training data set is
randomly selected from each group (e.g., diseased and control
subjects); the remaining data constitute the testing set.

Statgram. Subsequently a pointwise two-sample t�z test between
the groups in the training data set is performed. The 2D map of
the test statistic values along the spectrum is denoted as the
statgram.
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Threshold Determination. The random field theory is used to
determine the critical region (threshold) of the statgram at each
desired experimentwise significance level.

Variance Stability. (Optional) Variance stability is checked on
request to select stable markers.

Biomarker Selection. The subset of k biomarkers (k can be any
positive integer) from the remaining marker list from threshold
determination (or variance stability, if requested) that could best
discriminate between the groups in the training set is selected via
the best k-subset discriminant method. In practice, the smallest
k achieving the best possible classification performance is
selected.

Validation. The l-nearest neighbor classification method is used to
classify the testing data set. Sensitivity and specificity of the
classification are obtained.

Resampling. All steps, except data preprocessing, are iterated.
Consistency is checked, and distributions (of specificity, sensi-
tivity, etc.) are obtained.

Mass Spectra of Sera. We analyzed raw mass spectra data provided
online at the National Institutes of Health and Food and Drug
Administration Clinical Proteomics Program Databank web site
(http:��clinicalproteomics.steem.com�download-ovar.php)
(Ovarian Data Set 4-3-02 and Ovarian Data Set 8-7-02). Data Set
4-3-02 consisted of spectra from 100 patients with ovarian cancer
and 116 individuals without cancer, and Data Set 8–7-02, an
entirely independent data set, consisted of 162 spectra from
ovarian cancer patients and 91 individuals without cancer. The
spectra we analyzed were obtained by using a cation exchange
protein chip, WCX2, and a Protein Biosystem 2 surface-
enhanced laser desorption ionization–time-of-f light mass spec-
trometer (Ciphergen Biosystems). The samples in the earlier
data set were prepared by hand, and the samples in the second
set were prepared with a robotic instrument.

We first applied our algorithm to the analysis of the spectra
from the 100 ovarian cancer patients and 116 noncancer indi-
viduals in Data Set 4-3-02. The serum mass spectrum for each
subject consisted of 15,154 mass-to-charge ratios (m�z values) of
varying intensities. The average intensity of each m�z value of
the spectra from the 116 unaffected women and 100 women with
ovarian cancer is shown in Fig. 1. Apparent differences in the
intensity of certain biomarkers between the two groups can be
appreciated by inspection alone. However, one must ascertain
that the differences are statistically significant (systematic and
persistent in the population) and not due to random factors such
as outliers or other sampling fluctuations.

Data Preprocessing: Spectrum Standardization and Smoothing. The
relative intensity for each mass spectrum was obtained by
dividing the intensity at each m�z value by the average intensity
of the entire spectrum. Such standardization ensures compara-
bility across different spectra. Each relative spectrum was then
smoothed by a Gaussian kernel with a full width at half maximum
(FWHM) of 11 m�z measurement values. The ‘‘kernel’’ for
smoothing defines the shape of the function that is used to take
the average of the neighboring points. A Gaussian kernel is a
kernel with the shape of a Gaussian (normal distribution)
probability density curve. In the standard statistical way, we have
defined the width of the Gaussian shape in terms of the standard
deviation �. However, when the Gaussian shape is used for
smoothing, the convention is to describe its width with another
related measure, the FWHM, where FWHM � � �8ln2 �2.355
� (Fig. 2a).

Smoothing was done to (i) denoise and thus enhance the
signal-to-noise ratio and (ii) enable a multiple-test correction via
the random field theory in a later step. Determination of the
FWHM value depends on the accuracy of the MS and the
multiple-test correction considerations. A small kernel would
better preserve the original spectra. However, the smoothing
kernel should be at least as large as the mass accuracy of the
Ciphergen system, which is 0.1% (9, 10). Thus, a particle with a
detected mass value of x (m�z) could have the same true mass

Fig. 1. Average serum mass spectra of 116 unaffected women (a) and 100 women with ovarian cancer (b). Certain regions of the spectra (c–h) are enlarged
to show apparent differences in expression intensities between unaffected individuals (solid line) and ovarian cancer patients (broken line).
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as particles in its neighborhood within a range of 0.2% x (i.e., x �
0.1% x).

We found that the smallest FWHM that will achieve a mass
accuracy of at least 0.1% for the entire spectrum is FWHM �
11. The relationship between the range of the 11 adjacent points
within the Gaussian smoothing kernel (y axis) and the median of
the range (x axis) when FWHM � 11 is shown in Fig. 2b. For
FWHM � 11, the ratio of the range over its median (y axis) is
�0.2% for most of the spectrum and approaches 0.2% only
toward the highest m�z values of the spectrum (Fig. 2c). There-
fore, we have chosen to use FWHM � 11.

Sampling. After standardization and smoothing, the entire study
with 216 subjects was divided into the training set and the testing
set. The training set consisted of a random sample of 50 women
with ovarian cancer and a random sample of 50 unaffected
women. The remaining 50 women with cancer and the 66
unaffected women made up the testing set.

Statgram. An independent samples t�z test was performed at
each m�z value to compare the intensities between the two
training samples (cancerous and unaffected). The null hypoth-
esis was that the intensities are equal between the groups at each
location, and the alternative hypothesis is that they differ. The
test was performed at each m�z value, and the test statistic value
t(x) � (y�1(x) � y�2(x))���s1

2(x)�n1�s2
2(x)�n2), where y�1(x), y�2(x),

s1
2(x), and s2

2(x) are the means and standard deviations of
the training samples, was plotted against the m�z value to
generate the statgram (Fig. 3). Because both samples are large
(n1 � n2 �50), the test statistic t(x) followed approximately the
standard normal distribution under the null hypothesis.

At each m�z location, the larger the test statistic in absolute
value, the stronger the evidence supporting the alternative
hypothesis that the average intensities are different between the
two groups. When only one test is performed, one would reject
the null hypothesis at the significance level of 0.05 (two-sided)
if 	t(x)	 exceeds the critical value of 1.96. That means we are 95%
sure that the difference is real (true for the populations) and not
caused by the variability in random sampling.

Threshold Determination�Multiple-Test Correction. Because a total
of 15,154 tests were performed to cover the entire m�z range, the
confidence level would be much lower than 95% for the entire
set of tests if each test were conducted at the significance level

of 0.05. That is, one must perform a multiple-test correction to
determine a suitable significance level for each test such that we
are at least 95% sure that all of the significant differences
identified are real. Many traditional methods, for example, the
Tukey method or the Bonferroni method, are available for
multiple-test correction, but they tend to be more conservative.
For example, with the Bonferroni method, to ensure an experi-
mentwise error rate of 0.05 (two-sided), each test must be
performed at the significance level of 0.025�15,154 � 1.649729e-
006 (one-sided). The corresponding critical value for a normal
test is 4.65. That is, one would reject the null hypothesis of equal
intensity at the given m�z value if 	t(x)	 � 4.65. We used a less
conservative correction method based on the random field
theory (20). The prerequisite for this method is that each
spectrum is a 1D Gaussian field that is achieved by presmoothing
with a Gaussian kernel.

The Gaussian kernel is uniquely determined by its FWHM.
The relationship between the experimentwise error rate � and
the critical value t is given by

Fig. 2. (a) Illustration of the Gaussian kernel. The smoothed intensity of the biomarker with m�z value � is calculated as the weighted average, proportional
to the Gaussian density, of the intensities of its neighboring biomarkers. (b) Relationship between the range of the 11 adjacent points within the Gaussian
smoothing kernel (y axis) and the median of the range (x axis) when FWHM � 11. (c) Relationship between the ratio of the range over its median (y axis) and
the median of the range (x axis) for FWHM � 11.

Fig. 3. Statgram test statistic values and the critical value thresholds at �4.22
by the random field theory to ensure an experimentwise error rate of 0.05
(two-sided).
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where K is the total number of tests. In this analysis, where K �
15,154, there is little variation in the critical value when the
FWHM varies between 10 and 20 points (Fig. 4).

For a Gaussian kernel with FWHM � 11 and an experiment-
wise error rate of � � 0.05 (two-sided), the critical value is 4.22
by the random field theory, less conservative than the Bonferroni
threshold of 4.65. Thus, by applying the random field theory, the
effective number of tests is reduced from 15,154 to �1,025 (the
equivalent of a Bonferroni correction). In essence, the reduction
is achieved by eliminating redundant tests for m�z values within
the same smoothing kernel.

Thresholding at the critical value of 4.22, 563 tests remain
significant. The corresponding 563 protein biomarkers were
considered significantly different between the two populations
(women with ovarian cancer and unaffected women) and were
adopted as candidates for the discriminant analysis. These
biomarkers are not only critical in deriving the diagnostic�
discriminant rule but also invaluable for further biological
studies to ascertain and understand their roles in ovarian cancer
development and progress, and to develop and evaluate thera-
peutic drugs and other treatments.

Biomarker Selection�Discriminant Analysis. The subset of k biomar-
kers from the 563 candidates that best discriminate between the
two training samples were selected for any user-defined positive
integer k. The procedure starts from k � 1 where k increases by
1 after each iteration until the discriminating performance
reaches plateau. In this case, when k � 18, best separation was
achieved between the two groups (100% sensitivity and 100%
specificity by cross-validation) by using the l-nearest-neighbor
classifier with l � 5.

The distance metric for the nearest neighbor classifier is the
Mahalanobis distance based on the pooled variance–covariance
matrix V. The squared distance between two observation vectors
x and y is given by d2(x, y) � (x � y)�V�1(x � y). Here each vector
corresponds to a subject. Its elements are the expression levels
(intensities) of the k discriminating markers for the given subject.
The nearest-neighbor classifier and the kernel method are two
major nonparametric classification methods. The nearest-
neighbor classifier is equivalent to the uniform-kernel method
with a location-dependent radius.

We chose the nearest-neighbor classifier because of its ro-
bustness, f lexibility, and intuitive explanations. However, the
nearest-neighbor classifier and the kernel methods (normal
kernel or uniform kernel) tend to produce similar results. For a
nearest-neighbor classifier, the choice of l is usually relatively
uncritical (21). A practical approach is to try several different
values of l and choose the one that gives the best cross-validated
estimate of the classification rate. In our case, we chose l � 5. The
smallest l value that achieved perfect discrimination (in this case,
it was l � 5) was used for the discriminant analysis of the
remaining 116 spectra in the testing data set.

Cross-validation (22) treats n � 1 of n observations as a
training set. In our case n � 100. It determines the discrimination
functions based on these n � 1 observations and then applies
them to classify the one observation left out. This is done for
each of the n training observations. The classification rate for
each group, that is, sensitivity for the cancer group and speci-
ficity for the control group, is the proportion of sample obser-
vations in that group that are classified correctly. The selected
biomarkers (k � 18) are given in Table 1. The next step was to
determine whether the selected 18 biomarkers distinguish the
cancer patients from noncancer patients in the testing set of 50
cancer patients and 66 noncancer individuals.

Validation. Using the l-nearest-neighbor classifier with l � 5 for
discrimination and classification, we correctly identified all 50
women with ovarian cancer as positive and all 66 unaffected
women as negative. That is, the sensitivity and specificity of the
test are both 100%. The 95% confidence intervals for sensitivity
and specificity are (93%, 100%) and (95%, 100%), respectively.

Variance Stability Check. This is an optional step that may precede
or follow the best discriminating subset selection procedure. The
rationale for this step is that the expression level of certain
biomarkers may be correlated with disease stages or other
individual traits and therefore may have large variability across
all subjects in a training set (diseased or unaffected). By exam-
ining the coefficient of variation, a standardized measure of
variability that is unaffected by the magnitude of the mean (23),
one could establish a statistical threshold via the resampling
methods (24) to divide the significant markers into two subsets:
those with less and those with more variability. To derive a
discriminant rule that is more robust to the disease stages and
individual traits, one could select only the more stable markers
to derive the best k subset of biomarkers. On the other hand, one
could correlate more variable markers in the training set of
‘‘disease subjects’’ with disease stages�severity to derive a more
stage-sensitive discriminant rule. On the whole, the 18 markers
selected are relatively stable. The significance of the coefficient
of variation for marker selection and data interpretation should
be analyzed further when more subject-specific information is
available.

Validation with an Independent Data Set. To test the robustness of
our algorithm, we applied the above algorithm to classify subjects
from an independent data set of 162 ovarian cancer patients and
91 unaffected individuals (Ovarian Data Set 8-7-02 at http:��
clinicalproteomics.steem.com�download-ovar.php). The 18
markers identified (Table 1) and the same training set of 50
cancer patients and 50 controls from study 1 (Data Set 4-3-02)
also correctly classified, with 100% sensitivity and 100% speci-
ficity, all subjects in this second study. If we treat the entire study
2 (162 cancerous and 91 unaffected) plus the testing set from
study 1 (50 cancerous and 66 unaffected) as a combined testing
set of 212 ovarian cancer patients and 157 unaffected subjects,
the 95% confidence intervals for sensitivity and specificity would
be (98%, 100%) and (98%, 100%), respectively.

Fig. 4. Relationship between FWHM, experimentwise error rate, and critical
value. FWHM ranges from 20 to 1 from left to right.
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Resampling. To explore whether the perfect specificity and sen-
sitivity may have been caused by a fortuitous choice of the test
and training sets, we repeated the entire process by randomly
choosing another training set. Fifty iterations later, we obtained
50 perfect classifications. The best subset of biomarkers varied
from iteration to iteration. Rounding to the nearest integers, we
found 176 distinct markers consistently identified from these 50
resampling iterations. Further studies are necessary to ascertain
the roles of these markers and to validate the reliability and
accuracy of the serum MS technology.

Conclusions
There are several statistical analytical tools that were developed
to analyze mass spectra. The genetic algorithm was first de-
scribed by John Holland in the mid-1970s (17). It manipulates
the complex data sets as the individual elements through a
computer-driven analog of natural selection process. Kohonen
(18, 19) proposed a cluster analysis method by using a self-
organizing map.

The ideas of the genetic algorithm and the self-organizing map
were integrated into a software program, PROTEOME QUEST,
Beta version 1.0 and implemented as a pattern discovery algo-
rithm. PROTEOME QUEST has been used by the National Cancer
Institute�Food and Drug Administration proteomics group to
analyze the same public ovarian cancer data sets as analyzed in
this work (Ovarian Data Set 4-3-02 and Ovarian Data Set
8-7-02). PROTEOME QUEST yielded 100% sensitivity and 97%
specificity for Data Set 4-3-02 and 100% sensitivity and 100%

specificity for Data Set 8-7-02. Results are provided online at
http:��clinicalproteomics.steem.com�download-ovar.php.

PROTEOME QUEST uses a random window approach to sequen-
tially select the biomarkers and examine their contribution
toward the classification of mass spectra as being from one class
of individuals (disease-affected) compared with a different class
of individuals (disease-unaffected). A limitation of this approach
is that only a portion of the spectrum is used for the analysis. The
contribution of each biomarker may vary with the window size,
and therefore significant protein biomarkers may be excluded
from the analysis. Furthermore, the expression intensities of
selected biomarkers are not guaranteed to be significantly
different between the diseased and the control groups. This
would severely reduce the reliability of the resulting discrimi-
nating pattern.

In our statistical routine, we examine and quantify the role of
each biomarker along the mass spectrum. All biomarkers with
significantly different intensities of expression at the given
experimentwise error rate between the cancer and noncancer
subjects are selected for determination of the optimal set of
biomarkers. Application of our method to two independent data
sets of mass spectra generated by scientists at the Food and Drug
Administration and the National Cancer Institute show that our
statistical approach is highly effective in discriminating between
diseased and normal subjects. In conclusion, we believe that all
biomarkers significantly different between the groups should be
examined for their roles in disease etiology. Our method is not
only a tool for medical diagnostics but also an instrument for
biological discovery.
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