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Abstract

The prostate-specific antigen test has been a major factor in increasing
awareness and better patient management of prostate cancer (PCA), but
its lack of specificity limits its use in diagnosis and makes for poor early
detection of PCA. The objective of our studies is to identify better bio-
markers for early detection of PCA using protein profiling technologies
that can simultaneously resolve and analyze multiple proteins. Evaluating
multiple proteins will be essential to establishing signature proteomic
patterns that distinguish cancer from noncancer as well as identify all
genetic subtypes of the cancer and their biological activity. In this study,
we used a protein biochip surface enhanced laser desorption/ionization
mass spectrometry approach coupled with an artificial intelligence learn-
ing algorithm to differentiate PCA from noncancer cohorts. Surface en-
hanced laser desorption/ionization mass spectrometry protein profiles of
serum from 167 PCA patients, 77 patients with benign prostate hyperpla-
sia, and 82 age-matched unaffected healthy men were used to train and
develop a decision tree classification algorithm that used a nine-protein
mass pattern that correctly classified 96% of the samples. A blinded test
set, separated from the training set by a stratified random sampling before
the analysis, was used to determine the sensitivity and specificity of the
classification system. A sensitivity of 83%, a specificity of 97%, and a
positive predictive value of 96% for the study population and 91% for the
general population were obtained when comparing the PCA versus non-
cancer (benign prostate hyperplasia/healthy men) groups. This high-
throughput proteomic classification system will provide a highly accurate
and innovative approach for the early detection/diagnosis of PCA.

Introduction

The number of PCA4 cases has tripled during the past decade due
to the widespread use of serum PSA testing and DRE (1). Although
these efforts have allowed for increased identification of individuals
with cancer, overall “early” detection or determination of aggressive
cancers is needed. PSA is currently the best overall serum marker for
PCA in clinical use. Nevertheless, the PSA test lacks specificity (2, 3),

limiting its use as an early detection biomarker, and its relation to
biological activity has been questioned (4). It is important that addi-
tional diagnostic biomarkers be identified to reduce PCA mortality.
However, because of the robust molecular and cellular heterogeneity
of PCA, it is likely that a combination or a panel of biomarkers will
be required to improve the early detection of PCA.

The study of the cell’s proteome presents a new horizon for bi-
omarker discovery. Two-dimensional PAGE has been the classical
approach to explore the proteome for separation and detection of
differences in protein expression (5, 6). Advances in two-dimensional
gel electrophoresis technology coupled with robotics and software
programs for identifying potential protein alterations have improved
this proteomic system. Nevertheless, two-dimensional gel electro-
phoresis is still cumbersome, labor intensive, suffers reproducibility
problems, and is not readily transformed into a clinical assay. Ad-
vances have also been made in mass spectrometry to achieve high-
throughput separation and analysis of proteins (7–9). One of the recent
advances is the ProteinChip system manufactured by Ciphergen Bio-
systems, Inc. (Fremont, CA). This system uses SELDI time-of-flight
mass spectrometry to detect proteins affinity-bound to a protein chip
array (10, 11). This system is a novel, extremely sensitive, and rapid
method to analyze complex mixtures of proteins and peptides. Initial
studies from our laboratory established the potential of SELDI for
discovery and profiling of prostate and bladder cancer biomarkers in
body fluids and cell lysates (12, 13).

The objective of this study was to determine whether SELDI
protein profiling of serum coupled with an artificial intelligence data
analysis algorithm could effectively differentiate PCA from BPH and
unaffected HM. Using a standardized test set, we demonstrate proof of
principle that our SELDI protein profiling approach can accurately
discriminate PCA from patients with BPH and men of the same age
who do not have prostate disease. Our results form the basis for
initiating further evaluation and validation to assess the potential of
this SELDI proteomic classification system for the early detection and
diagnosis of PCA, and further study is warranted to establish profiles
that identify the clinically important lethal cancers.

Materials and Methods

Serum Samples. Serum samples were obtained from the Virginia Prostate
Center Tissue and Body Fluid Bank. The serum procurement, data manage-
ment, and blood collection protocols were approved by the Eastern Virginia
Medical School Institutional Review Board. Blood samples from patients
diagnosed with either PCA or BPH were procured from the Department of
Urology, Eastern Virginia Medical School, and the HM cohort was obtained
from free screening clinics open to the general public. Only pretreatment
samples obtained at the time of diagnosis of PCA or BPH were used for this
study. After obtaining informed consent from the patient, the sample was
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collected into a 10-cc Serum Separator Vacutainer Tube and centrifuged 30
min later at 375,000 rpm for 5 min. The serum was distributed into 500-�l
aliquots and stored frozen at �80°C. A quality control sample was prepared by
pooling an equal amount of serum from each specimen of the age-matched HM
group and storing 100-�l aliquots at �80°C. The quality control serum sample
was used to determine reproducibility and as a control protein profile for each
SELDI experiment.

Patient and Donor Cohorts. Specimens from four groups of patients were
used in this study: (a) 97 age-matched HM (control); (b) 92 patients with BPH;
(c) 99 patients diagnosed with organ-confined PCA (T1/T2); and (d) 98 patients
diagnosed with non-organ-confined PCA (T3/T4). A donor was selected for the
HM group if he had a normal DRE, a PSA � 4.0 ng/ml, and no evidence of
prostatic disease. The HM group consisted of 48 Caucasian and 48 African-
American males ranging in age from 51–70 years (mean age, 60 years). There
were 33 Caucasians, 2 African Americans, and 57 men of unknown race in the
BPH patient group, ranging in age from 48–86 years (mean age, 67 years). The
BPH patients were selected if they had PSA values between 4 and 10 ng/ml,
low PSA velocities (i.e., PSA velocity �0.7 ng/ml/year), and multiple negative
biopsies. The number of biopsies was two (73 cases), three (13 cases), and four
(6 cases). The organ-confined PCA group (T1/T2) consisted of 76 Caucasians,
20 African Americans, 1 Asian, and 2 men of unknown race with ages ranging
from 50–89 years (mean age, 71 years). For the non-organ-confined PCA
group (T3/T4), there were 80 Caucasians, 16 African Americans, and 2 men of
unknown race, ranging in age from 44–87 years (mean age, 69 years). The
range and mean PSA values for the groups were as follows: a 0.15–3.83 ng/ml
(1.32 ng/ml) for the HM group [86 members of this group had a PSA � 2.5
ng/ml (the latter were considered to be a low-risk group)]; (b) 0.0–10.91 ng/ml
(4.60 ng/ml) for the BPH group; (c) 0.0–95.16 ng/ml (10.10 ng/ml) for the
organ-confined PCA (T1/T2) group; and (d) 0.0–8752 ng/ml (206.93 ng/ml)
for the non-organ-confined PCA (T3/T4) group.

SELDI Protein Profiling. Various chip chemistries (hydrophobic, ionic,
cationic, and metal binding) were initially evaluated to determine which
affinity chemistry provided the best serum profiles in terms of number and
resolution of proteins. The IMAC-Cu metal binding chip was observed to give
the best results. IMAC-3 chips (Ciphergen Biosystems, Inc.) were coated with
20 �l of 100 mM CuSO4 on each array, placed on a TOMY Micro Tube Mixer
(MT-360; Tomy Seiko Co., Ltd.), and agitated for 5 min. The chips were rinsed
10 times with DI water, and 20 �l of 100 mM sodium acetate were added to
each array and shaken for 5 min to remove the unbound copper. The chips were
rinsed again with DI water (10 times) and put into a bioprocessor (Ciphergen
Biosystems, Inc.), which is a device that holds 12 chips and allows application
of larger volumes of serum to each chip array. The bioprocessor was washed
and shaken on a platform shaker at a speed of 250 rpm for 5 min with 200 �l
of PBS in each well. This was repeated twice more, and each time the PBS
buffer was discarded by inverting the bioprocessor on a paper towel. Serum
samples for SELDI analysis were prepared by vortexing 20 �l of serum with
30 �l of 8 M urea/1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-
sulfonic acid in PBS in a 1.5-ml microfuge tube at 4°C for 10 min. One
hundred �l of 1 M urea with 0.125% 3-[(3-cholamidopropyl)dimethylammo-
nio]-1-propanesulfonic acid were added to the serum/urea mixture and vor-
texed briefly. PBS was added to make a 1:5 dilution and placed on ice until
applied to a protein chip array. Fifty �l of the diluted serum/urea mixture were
applied to each well, and the bioprocessor was sealed and shaken on a platform
shaker at a speed of 250 rpm for 30 min. The serum/urea mixture was
discarded, and the PBS washing step was repeated three times. The chips were
removed from the bioprocessor, washed 10 times with DI water, air dried, and
stored in the dark at room temperature until subjected to SELDI analysis.
Before SELDI analysis, 0.5 �l of a saturated solution of the EAM sinapinic
acid in 50% (v/v) acetonitrile, 0.5% trifluoroacetic acid was applied onto each
chip array twice, letting the array surface air dry between each sinapinic acid
application. Chips were placed in the Protein Biological System II mass
spectrometer reader (Ciphergen Biosystems, Inc.), and time-of-flight spectra
were generated by averaging 192 laser shots collected in the positive mode at
laser intensity 220, detector sensitivity 7, and a focus lag time of 900 ns. Mass
accuracy was calibrated externally using the All-in-1 peptide molecular mass
standard (Ciphergen Biosystems, Inc.).

Data Analysis. The data analysis process used in this study involved three
stages: (a) peak detection and alignment; (b) selection of peaks with the
highest discriminatory power; and (c) data analysis using a decision tree

algorithm. A stratified random sampling with four strata [PCA (T1/T2), PCA
(T3/T4), BPH, and HM] was used to separate the entire data set into training
and test data sets before the analysis. The training data set consisted of SELDI
spectra from 167 PCA, 77 BPH, and 82 normal serum samples. The validity
and accuracy of the classification algorithm were then challenged with a
blinded test data set consisting of 30 PCA, 15 BPH, and 15 normal samples.

Peak Detection. Peak detection was performed using Ciphergen SELDI
software versions 3.0 � and 3.0.5 The mass range from 2,000–40,000 Da was
selected for analysis because this range contained the majority of the resolved
protein/peptides. The molecular masses from 0–2,000 Da were eliminated
from analysis because this area contains adducts and artifacts of the EAM and
possibly other chemical contaminants. Peak detection involved (a) baseline
subtraction, (b) mass accuracy calibration, and (c) automatic peak detection.
The software program calculates noise, peak area, and filter based on the
criteria selected by the operator for data analysis. The settings used for this
study were as follows: (a) fitting window width � 100 data points; (b) average
noise � 10 points; (c) peak area calculated using the slope-based method; (d)
low minimum valley depth � 10 times noise; (e) high minimum valley
depth � 0.5 times noise; (f) low and high sensitivity of peak height � 10 and
2 times noise, respectively; (g) auto peak detection slider � 8 for mass range
2–4 kDa, 11 for mass range 4–8 kDa, and 8 for mass range 8–40 kDa. An
average of 81 peaks was detected in each spectrum.

Peak Alignment. All of the labeled peaks from 772 spectra were exported
from SELDI to an Excel spreadsheet. A PeakMiner algorithm,6 developed
in-house, was used to align peaks and perform statistical analysis. Peaks were
first sorted by mass, and a mass error value was calculated for each peak. The
mass error score, the measurement of mass difference between peak X and
peak X � 1, is calculated for each peak using (Mpx � Mpx �1)/Mpx, where
Mpx is the mass value of peak X. For example, if the mass error score was
�0.18%, peak X and peak X � 1 would align into one peak, representing the
same protein in each sample. If the mass error was �0.18%, then peak X and
peak X � 1, would be considered two distinct peaks. This is an iterative
process throughout all of the labeled peaks.

Feature Selection. The power of each peak in discriminating normal
versus PCA, normal versus BPH, and BPH versus PCA was determined by
estimating the AUC, which ranges from 0.5 (no discriminating power) to 1.0
(complete separation).

Decision Tree Classification. Construction of the decision tree classifica-
tion algorithm was performed as described by Breiman et al. (14) with
modifications,7 using a training data set consisting of 326 samples (82 normal,
77 BPH, and 167 PCA samples). Classification trees split up a data set into two
bins or nodes, using one rule at a time in the form of a question. The splitting
decision is defined by presence or absence and the intensity levels of one peak.
For example, the answer to “Does mass A have an intensity less than or equal
to X” splits the data set into two nodes, a left node for yes and a right node for
no. This splitting process continues until terminal nodes or leaves are produced
or further splitting has no gain. Classification of terminal nodes is determined
by the group (“class”) of samples (i.e., PCA, BPH, or HM) representing the
majority of samples in that node. A “cost” function is calculated that reflects
the heterogeneity of each node: �log L � ��njlog(pj) where L is the
likelihood of the multinomial distribution, nj is the number of samples in class
j, and pj is the probability of class j. Peaks selected by this process to form the
splitting rules are the ones that achieve the maximum reduction of cost in the
two descendant nodes.

Statistical Analyses. The AUC was computed to identify the peaks with
the highest potential to discriminate the three groups, based on the probability
that the test result from a diseased individual is more indicative of disease than
that from a nondiseased individual (15). A Bayesian approach was used to
calculate the expected probabilities of each class in each terminal node (16),
and their 95% confidence intervals were calculated using the posterior Dir-
ichlet distribution (16). The 95% confidence intervals were calculated by
generating and sorting 4000 samples for the posterior Dirichlet distribution,
and the 100th and 3900th sample were considered as the lower and upper
bounds of the 95% confidence intervals, respectively. Specificity was calcu-
lated as the ratio of the number of nondisease samples correctly classified to

5 Internet address: www.chiphergen.com.
6 Internet address: www.evms.edu/vpc/seldi.
7 Internet address: http://140.107.129.65/stat_methods.htm.
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the total number of nondisease samples. Sensitivity was calculated at the ratio
of the number of correctly classified diseased samples to the total number of
diseased samples. The PPV for the study population was calculated by dividing
the number of true PCA positives by the sum of the number of true PCA
positives plus the number of false PCA positives. The NPV for the study
population was calculated by dividing the number of true negative nondisease
samples (BPH/HM) by the sum of the number of false negative plus the
number of true negative nondisease samples (BPH/HM). The PPV and NPV
for PCA versus noncancer (BPH/HM) in the general population were calcu-
lated as follows: PPV (for population) � sensitivity * rho/[sensitivity *
rho � (1 � specificity) * (1 � rho)]; and NPV (for population) � specificity
* (1 � rho/[specificity) * (1 � rho) � (1 � sensitivity) * rho], where rho is
prevalence in the population.

Results

Data Analysis. Peak detection using the SELDI software program
detected 63,157 peaks in the 2–40-kDa mass range after analysis of
772 spectra (386 spectra in duplicate, with approximately 81 peaks/
spectrum). Of these, 779 peaks were identified after the clustering and
peak alignment process. The AUC was calculated for each of the 779
peaks. No single peak was identified that had an AUC of 1.0, indi-
cating that there was not a peak detected that alone could completely
separate two groups (i.e., HM versus PCA, HM versus BPH, or BPH
versus PCA) or three groups (PCA versus BPH versus HM). Of the
779 peaks, 124 had an AUC � 0.62. Those with an AUC � 0.62 were
considered irrelevant for classification. These 124 peaks identified in
the training set were then used to construct the decision tree classifi-
cation algorithm. Fig. 1 is a flow diagram that summarizes the process
from peak detection to sample classification. The classification algo-
rithm used nine masses between 4 and 10 kDa (4475, 5074, 5382,
7024, 7820, 8141, 9149, 9507, and 9656 Da) to generate 10 terminal
nodes (L1�L10; Fig. 2A). Once the algorithm identifies the most
discriminatory peaks, the classification rule is quite simple. For ex-
ample, if an unknown sample has no peak at mass 7819.75 (“root”
node) but has a peak at mass 7024.02, then the sample is placed in
terminal node L1 and classified as PCA. If the sample is placed in L2,
it will be assigned to BPH. Another example of this splitting process
is shown in Fig. 2B, in which four masses between 5 and 10 kDa are
used to assign 46 of the 167 PCA samples to terminal node L7. Based

Fig. 1. Flow diagram showing the processes involved in development of the classifi-
cation tree analyses program. N and Normal, unaffected HM.

Fig. 2. Classification of the prostate disease and nondisease samples in the training data
set. A, diagram of decision tree analyses. The root node (top) and descendant nodes are
shown as ovals, and the terminal nodes (L1�L10) are shown as rectangles. The numbers
in each node represent the classes [top number, number of HM (normal control) samples;
middle number, number of PCA samples; bottom number, number of BPH samples]. The
first number under the root and descendant nodes is the mass value followed by the peak
intensity value. For example, the mass value under the root node is 7819.75 kDa, and the
intensity is �0. B, representative example of a SELDI spectrum showing the combination
of four peak masses required to correctly classify the sample as PCA in the L7 terminal
node. The arrows in the magnified panels identify the protein peaks used in the classifier,
and the numbers 1–4 in the top right corner indicate the order the decision tree takes in
assigning the sample to the L7 terminal node. The first number under each panel is the
mass, and the second number is the peak intensity. C, example of the reproducibility of
the SELDI and decision tree classification analyses. Serum samples randomly selected and
repeated 18 months (B) after the initial SELDI analysis (A) showed similar spectra and
were correctly classified to the appropriate terminal node by the decision tree algorithm;
in this example either terminal node L1, L2, or L6. N1, sample from a healthy male donor;
B1, sample from a patient with BPH; C1, sample from a patient with PCA.
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on the stochastic nature of reality, misclassification of a new sample
cannot be ruled out even for a pure node that contains only one sample
type, for example, L2, which contains only BPH samples. To obtain
an idea of whether an unknown sample would be correctly classified
or misclassified, the expected probability and 95% confidence level
was calculated for each class in the 10 terminal nodes (Table 1). The
expected probabilities for HM and PCA samples to be misclassified in
L2, for example, are 1.67%. Although not zero, the likelihood of HM
or PCA samples being assigned to this node is extremely low; whereas
BPH has a 96.67% chance of being correctly classified to L2 (with the
95% confidence interval between 90.72% and 99.52%). The proba-
bility of incorrect assignment of samples increases in nodes that
contain few majority samples or when only a few samples are as-

signed to the node, as, for example, terminal nodes L3, L5, and L9
(Fig. 2A).

A summation of the classification results from the 10 terminal
nodes is presented for the training and test sets in Table 2. The
classification algorithm correctly predicted 93.51–97.59% of the sam-
ples for each of the three groups in the training set (Table 2A), for an
overall correct classification of 96%. The algorithm correctly pre-
dicted 90% (54 of 60) of the test samples, with all 15 samples from
HM, 93% (14 of 15) of the BPH samples, and 83% (25 of 30) of the
PCA samples being correctly classified (Table 2B). Three of the
misclassified HM cases in the training set had PSA values � 2.5
ng/ml (i.e., 0.15, 0.76, and 1.52 ng/ml), considered a low-risk group,
and the fourth case had a PSA of 3.02 ng/ml (i.e., high-risk group).
Therefore, no correlation for the misclassification of four of the HM
cases with PSA levels could be made.

The sensitivity and specificity of the classification system for
differentiation of disease from the nondisease groups are presented
in Table 2C. When comparing PCA versus noncancer (BPH/HM),
the sensitivity was 83% (25 of 30), and the specificity was 97% (29
of 30). A sensitivity of 83% was also obtained when comparing
PCA versus HM (25 of 30) or PCA versus BPH (25 of 30), whereas
the specificity was 100% (15 of 15) for PCA versus HM and 93%
(14 of 15) for PCA versus BPH. The PPV and NPV for the study
population were 96.15% and 96.67%, respectively. When consid-
ering an estimated 30% prevalence of PCA in the general popula-
tion of men age 50 years or older (17), the PPV is 91.15%, and the
NPV is 93.12%.

Reproducibility. The reproducibility of SELDI spectra, i.e., mass
location and intensity from array to array on a single chip (intra-assay)
and between chips (interassay), was determined using the pooled
normal serum quality control sample. Seven proteins in the range of
3,000–10,000 Da observed on spectra randomly selected over the
course of the study were used to calculate the coefficient of variance.
The intra-assay and interassay coefficient of variance for peak loca-
tion was 0.05%, and the intra-assay and interassay coefficient of
variance for normalized intensity (peak height or relative concentra-
tion) was 15% and 20%, respectively (data not shown). Masses that
were within 0.18% mass accuracy between spectra were considered to
be the same. Most important was the observation that randomly
selected samples, blinded to the person performing SELDI and rerun

Table 1 Expected probabilities and the 95% confidence levels for each of the classes
assigned to the 10 terminal nodes

Node Class Observation Probability
95% Confidence
level (low, high)

L1 HM 1 0.0625 0.0081, 0.1693
PCA 27 0.8750 0.7423, 0.9630
BPH 1 0.0625 0.0087, 0.1698

L2 HM 0 0.0167 0.0005, 0.0584
PCA 0 0.0167 0.0004, 0.0628
BPH 57 0.9667 0.9072, 0.9952

L3 HM 1 0.2000 0.0247, 0.4793
PCA 5 0.6000 0.3027, 0.8592
BPH 1 0.2000 0.0248, 0.4753

L4 HM 0 0.0714 0.0018, 0.2509
PCA 0 0.0714 0.0019, 0.2579
BPH 11 0.8571 0.6311, 0.9823

L5 HM 0 0.1429 0.0040, 0.4725
PCA 4 0.7143 0.3557, 0.9567
BPH 0 0.1429 0.0040, 0.4504

L6 HM 74 0.9494 0.8950, 0.9858
PCA 2 0.0380 0.0082, 0.0879
BPH 0 0.0127 0.0003, 0.0459

L7 HM 0 0.0204 0.0005, 0.0738
PCA 46 0.9592 0.8893, 0.9951
BPH 0 0.0204 0.0005, 0.0726

L8 HM 4 0.5556 0.2458, 0.8416
PCA 2 0.3333 0.0836, 0.6544
BPH 0 0.1111 0.0032, 0.3732

L9 HM 0 0.1429 0.0034, 0.4560
PCA 0 0.1429 0.0037, 0.4830
BPH 4 0.7143 0.3354, 0.9566

L10 HM 2 0.0337 0.0068, 0.0784
PCA 81 0.9213 0.8595, 0.9674
BPH 3 0.0449 0.0123, 0.0964

Table 2 Decision tree classification of the prostate training and test sets

Sample Normal BPH PCA Misclassified rate

A. Training set

HM (N � 82) 78 (95.12%) 0 (0.00%) 4 (4.88%) 4 (4.88%)
BPH (N � 77) 0 (0.00%) 72 (93.51%) 5 (6.49%) 5 (6.49%)
PCA stage T1, T2 (N � 84) 2 (2.38%) 0 (0.00%) 82 (97.61%) 2 (2.38%)
PCA, stage T3, T4 (N � 83) 2 (2.40%) 0 (0.00%) 81 (97.59%) 2 (2.41%)
Total no. of samples (N � 326) 13 (3.99%)

Sample Normal BPH PCA Misclassified rate

B. Test set

HM (N � 15) 15 (100.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
BPH (N � 15) 0 (0.00%) 14 (93.33%) 1 (6.67%) 1 (6.67%)
PCA, stage T1, T2 (N � 15) 3 (6.67%) 0 (0.00%) 12 (80.00%) 3 (20.00%)
PCA, stage T3, T4 (N � 15) 1 (6.67%) 1 (6.67%) 13 (86.67%) 2 (13.33%)
Total no. of samples (N � 60) 6 (10.00%)

Disease/nondisease

Percent positive (no. positive/no. tested)

PCA/HM PCA/BPH PCA/(BPH/HM) BPH/HM BPH/T1,T2 Ti,T2/T3,T4

C. Differentiation of prostate disease from nondisease in the blinded test set

Sensitivity 83 (25/30) 83 (25/30) 83 (25/30) 93 (14/15) 93 (14/15) 80 (12/15)
Specificity 100 (15/15) 93 (14/15) 97 (29/30) 100 (15/15) 80 (12/15) 87 (13/15)
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months or even a year later, were correctly classified by the decision
tree classification algorithm (Fig. 2C).

Discussion

The current standard screening approach for PCA is a serum test for
PSA, and if the test is positive, biopsies are obtained from each lobe
of the prostate. Although the PSA test has a sensitivity of �90%, its
specificity is only 25%. This low specificity results in subjecting men
to biopsies of the prostate as well as considerable anxiety when they
do not have PCA detectable by biopsy. With the SELDI profiling
classification approach, an overall sensitivity of 83%, a specificity of
97%, and a PPV of 96% were obtained in differentiating PCA from
BPH and age-matched unaffected HM. Provided that this SELDI
profiling classification system can be validated using a larger and
more clinically diverse study set, this approach would have immedi-
ate and substantial benefit in reducing the number of unnecessary
biopsies.

Our successful development of a diagnostic system that achieved a
high PPV (96%) for the blinded test set is based on using a large,
carefully chosen training set of randomly selected samples. All spec-
imens were closely age matched. Serum samples from unaffected
HM, identified as men with a negative DRE and PSA �4.0 ng/ml,
were obtained from the general population during free prostate screen-
ing clinics. Nevertheless, selecting a cancer-free control population
for studies described herein is difficult. It is unusual for a man with a
normal PSA and normal DRE to undergo a prostate biopsy to be
certain that the controls are truly negative. About the best that can be
done is to select healthy controls that have potentially the lowest risk
for PCA. For this study, 86 of the 96 HM cases had PSA values �2.5
ng/ml, which is considered a lower-risk group. The majority of the
BPH patients had 4–10 ng/ml PSA and multiple negative biopsies,
and the PCA patients had cancers ranging from small volume local-
ized disease to local and distant metastatic disease and PSA values
varying from 0 to �8000 ng/ml. Another important factor in the
construction of a successful classification system was using an algo-
rithm that could filter out the “noise” that is characteristic of mass
spectrometry instruments, the spurious signals created by the EAM
and chemical contaminates introduced in the assay, and the natural
random daily fluctuations and sample-to-sample variability. This
“normalization” process is critical in distinguishing peaks due to
artifacts from the true peptide/protein peaks. It becomes even more
important when considering that most all of the protein alterations
between the cancer and noncancer cohorts are based on the overex-
pression or underexpression of proteins and not solely on their pres-
ence or absence. We believe that accurate and reproducible feature
selection or peak “picking” algorithms with normalization functions is
the most critical first step in developing a successful classification
algorithm for the SELDI profiling data.

It was encouraging that the three study cohorts could be separated
based on the overexpression or underexpression of nine peptide/
protein masses. However, it was not surprising that multiple bio-
markers would be required to effectively deal with the problem of
tumor microheterogeneity that has plagued so many biomarker inves-
tigations. A previous study from our laboratory (12) is, to the best of
our knowledge, the first report describing the concept of SELDI
protein profiling as a potential diagnostic approach. This study ob-
served that the selection of a combination of multiple proteins re-
solved by SELDI dramatically improved the detection rate of early-
stage bladder cancer compared with a single marker (i.e., urine
cytology). Although the differential analysis in this latter study was
conducted by cluster analysis and laborious manual visual inspection
of all spectra, it did, however, demonstrate the power of SELDI

profiling to facilitate the discovery of better cancer biomarkers. Fur-
thermore, it clearly illustrated the need for a bioinformatics algorithm
to effectively deal with the high dimensionality of the SELDI data.
Based on the results of this previous study, we have explored several
different bioinformatics models to mine and analyze the large
amounts of data generated from these clinical proteomic studies. The
models have included purely biostatistical algorithms, genetic cluster
algorithms, support vector machines, and decision classification trees.
All have obtained between 83–90% accuracy in separating PCA from
the noncancer (BPH/HM) samples.8 The classification tree model was
selected because it is easy to interpret and the results can be clearly
presented compared with “black box” classifiers such as neural net-
works and biostatistical algorithms, specifically with regard to the
problems associated with the deconvolution steps required in identi-
fying the protein peaks used in the classifiers. With the decision tree
algorithm, the protein peaks used in the classifier are easily attainable
by examination of the rules, and these rules are easily validated by
examination of the SELDI processed spectra. Further proof of concept
that coupling an artificial intelligent learning algorithm to analyze
SELDI profiling data has potential as a diagnostic test is the recent
report describing the use of a modified genetic algorithm that
achieved a PPV of 94% in differentiating ovarian cancer from benign
ovarian disease and healthy unaffected women (18). The discriminator
pattern for classification of ovarian cancer in the study of Petricoin et
al. (18) consisted of five protein masses of 534, 989, 2111, 2251, and
2465 Da. Although they used hydrophobic chip chemistry, which
might be expected to bind some different proteins than those that
would bind to the IMAC-3Cu chip used in the present study, it is
interesting to note that the masses are distinctly different from those
used in the prostate classification system. This suggests that the
SELDI protein fingerprint profiling approach is detecting different
protein patterns for each type of cancer. Studies in progress in our
laboratory strongly suggest that this may be the case. We have
observed that SELDI profiles of breast cancer, ovarian cancer, bladder
cancer, and leukemia are different from each other and from the
prostate classification profile described in this report.9 To assure the
robustness of our diagnostic system, the prostate classification algo-
rithm is being challenged with non-PCAs and non-prostate diseases to
determine that the protein profiling classification algorithm is specific
for PCA. A similar scheme will be required of any disease-specific
classification system.

One of the goals of this study was to identify markers in the prostate
proteome that could potentially be used for early detection of cancer.
Ongoing studies in our laboratory evaluating longitudinal serum sam-
ples over a 5–10-year period suggested that PCA may be suspected 5
or more years earlier than by PSA testing.10 If validated with a larger
number of patients, such studies will support the SELDI classification
system as an early diagnostic test. However, to effectively apply this
classification system for early detection, it will be essential to identify
other biomarkers that can distinguish the aggressive cancers, i.e.,
clinically important cancers, from nonaggressive cancers. Current
evidence suggests that preoperative serum PSA �10 ng/ml is not a
useful biomarker for predicting the presence, volume, grade, or rate of
postoperative failure (4, 19). Thus, there is an urgent need for a better
biological marker than PSA and all its molecular forms have been able
to provide. A marker proportional to the volume of Gleason grade 4/5
(undifferentiated cancer) represents a critical need to more logically
direct therapy tailored to tumor biology. Studies are in progress in our

8 G. L. Wright, Jr., O. J. Semmes, P. Barlett, and C. Harris, unpublished observations.
9 G. L. Wright, Jr., A. Vlahou, C. Laronga, J. Marks, and O. J. Semmes, unpublished

observations.
10 G. L. Wright, Jr., P. F. Schellhammer, and B-L. Adam, unpublished observations.

3613

DETECTION OF PROSTATE CANCER BY PROTEOMIC PROFILING



laboratory to evaluate SELDI serum spectra of pre- and postprosta-
tectomy samples from patients who, after treatment, have biochemical
evidence for recurrent disease in an effort to identify the biomarkers
or risk factors that signal an aggressive cancer.

The successful use of the prostate classification system described
herein relies entirely on the protein fingerprint pattern of the nine
masses. Because these masses were found to be reproducibly reliably
detected, only the mass values are required to make a correct classi-
fication or diagnosis. Knowing their identities for the purpose of
differential diagnosis is not required. However, because knowing their
exact identities will be essential for understanding what biological
role these peptide/proteins may have in the oncogenesis of PCA,
potentially leading to novel therapeutic targets, efforts are under way
to purify, identify, and characterize these protein/peptide biomarkers.
Furthermore, knowing their identities will be essential for producing
antibodies for development of either classical or SELDI immunoas-
says, similar to the single and multiplex formats we described previ-
ously for the quantitation of PSA and prostate-specific membrane
antigen (12, 20). The SELDI immunoassay format provides an alter-
nate platform for quantitation of multiple biomarkers.

The high sensitivity, specificity, PPV, and NPF obtained by the
serum protein profiling approach presented in this study demonstrate
that SELDI protein chip mass spectrometry combined with an artifi-
cial intelligence classification algorithm can both facilitate discov-
ery11 of better biomarkers for prostate disease and provide an inno-
vative clinical diagnostic platform that has the potential to improve
the early detection and differential diagnosis of PCA.
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