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ABSTRACT 
A peak detection algorithm for Tandem Mass Spectra 
is presented that scores a fragment using intensity and 
isotopic distribution. It classifies each fragment in a 
spectrum as noise or signal based on a maximum 
likelihood estimate derived from the distribution 
observed in a training set of 12,000 validated spectra. 
This is the largest such database known to the authors. 
We present three tools which apply this algorithm: the 
Quality Filter removes noisy spectra, Mod-Pro profiles 
modifications and amino acids in a sample and 
Spectrimilarity scores similarity of two spectra. 
Contact: njaitly@caprion.com 
Keywords: Mass Spectra, Isotope Distribution, Peak 
Scoring, Quality Filter. 
 
INTRODUCTION 
Tandem Mass Spectrometry has become a major analytical 
method in Proteomics. By analyzing tandem mass spectra, 
peptides and post-translational modifications (PTMs) of 
proteins can be identified. For example, the Human 
Proteome Organization’s Proteome Project is dependent 
upon the acquisition and interpretation of MSMS data 
(Human Proteome Organization, 2004). 

  Proteins in a sample are digested with an enzyme such as 
trypsin, giving peptides which are amino acids joined 
together in series by peptide bonds. A tandem mass 
spectrometer fragments peptides stochastically along peptide 
bonds resulting in different types of ions (Eng et al.,1994). It 
then detects the mass to charge ratios (m/z) and intensities of 
the fragments, giving a mass spectrum for the peptide. The 
spectra can be interpreted by looking for peaks separated by 
the mass of an amino acid and/or PTMs. The peptide can be 
inferred by determining a ladder of amino acids in the 
spectra (figure 1).  

  Interpretation is complicated by several factors. The 
presence of significant amount of electrical and chemical 
noise, side-chain fragmentation, isotope peaks, etc, makes it 
difficult to determine which peaks correspond to fragment 
ions. Intensity can be used to classify peaks. Previous 
approaches used the intensity of a peak (relative to local 
maximum of intensity) to determine if a peak was significant 
or not (Eng et al., 1994; Sadygov et al., 2002). However, 
relative intensity varies over m/z and by itself is not a good 

enough indicator of significance of a peak. Isotope peaks are 
another complicating factor. Peptide fragments are usually 
detected not just as one peak but as two or three isotope 
peaks separated by an m/z of 1/ch Da in the spectra, where 
ch is the charge of the fragment. The relative intensities of 
these peaks depend on the composition of the fragment. Gay 
et. al. used a theoretical multinomial distribution to score the 
isotopes for peptides in peptide mass fingerprinting (Gay et 
al. 1999). However, the fragments in tandem mass spectra 
are of low intensity which makes it harder to observe the 
correct theoretical ratios of the isotopes. Moreover the model 
does not provide a score for noise. 

  We present a peak detection algorithm using a peak 
model based on intensity, isotopic ratios and m/z. We then 
present three MSMS data analysis tools that use this engine. 
Not only does the peak detection algorithm significantly 
improve the accuracy of these tools, but these tools also 
provide the foundation for large scale, high throughput 
proteomics. 

 
PEAK IDENTIFICATION THROUGH A 
MAXIMUM LIKELIHOOD ESTIMATE 

Let r ∈ Zn, be the ordered set of intensities of the first n 
isotopes of a fragment. For our purposes we used n = 3. Let 
the intensity, int, be the intensity of the first isotope, ch be 
the charge, mz be the m/z ratio.  Let type=peak, denote the 
event that a given fragment is a real peptidic ion and let 
type=non-peak, denote the event that a given fragment is not 
a real peptidic ion.  

Then, P(r,int|type=peak,mz,ch) represents the probability 
that a real peak of mz=m/z and charge=ch would have an 
intensity, int, and isotopic ratio r. Correspondingly, 
P(r,int|type=non-peak,mz,ch) represents the probability that 
a non-peak fragment of m/z=mz and charge=ch would have 
an intensity, int, and isotopic ratio r. 

Thus, given m/z, r, and int, we can get the charge and type 
of the fragment from the maximum likelihood estimate as 
follows:  

  type* =  arg maxtype
  P(r,int|type,mz,ch) and  charge* =  

arg maxch
  P(r,int|type,mz,ch).  

We define Peak Intensity & Isotopic Ratio Significance or 
PIIRS (pronounced peers) as:  
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Figure 1. A peptide can be sequenced by inspecting the 
difference in mass between peaks. 
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Figure 2. Interpretation of spectra is complicated by the 

effect of m/z on background noise. 
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TRAINING AND RESULTS 

We used an internal database of over 12,000 manually 
validated spectra for training and a different set of 1200 
manually validated spectra for testing. From the sequence 
assigned to each spectrum we were able to label peaks as 
peak or non-peak, and use this to train our model.  The 
intensities of fragments in spectra were normalized before 
training. We developed two normalization procedures, 
Background-Average (BA), and Background-Median 
(Bmed). In BA and Bmed peaks were normalized against the 
local average intensity and local median intensity 
respectively. We compared them against a commonly used 
normalization, which we are calling Background-Maximum 
(BMax), where peaks are normalized relative to the local 
maximum intensity (Eng et al., 1994; Sadygov et al., 2002). 
Over 90% sensitivity, and 90% specificity was achieved in 
classifying peaks in a test set of 1200 spectra. Figure 3 
presents a comparison of the Receiver-Operator-
Characteristic (ROCs) using the three different 
normalization procedures. While BMax seems to perform as 
well as BA, BMed on clean data, it lacks robustness when 
applied to noisy data (see the section 4).  

4. MSMS TOOLS USING PIIRS  
 
QUALITY FILTER 

In a large scale project where thousands of spectra are 
acquired, spectra need to be prioritized for analysis based on 
their quality. Let AAMass be the set of amino acid masses 
(enumerated with and without PTMs), fragments(sp) be the  

 
Figure 3. ROC for PIIR peak detection on a  

testing set of 1200 spectra. 
 

 
Figure 4. ROCs of Quality Filter using different 

normalizations. BMax is not very robust as a normalization 
procedure with PIIR. 

 
Figure 5. Assignment Rate vs Quality. 26,180 spectra 

were assigned sequences by MASCOT and semi-automatic 
validation performed using Caprion Filter. Assignment rate 
over the entire set (all quality score bins) with Mascot was 
approximately 40%. 
 
set of fragments in spectrum, sp, mi, pi

 be the m/z, and the 
PIIR score of the ith peak in sp. Then, we define the quality 
of a spectrum, sp as 

 
 
Quality(sp)=
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Informally, we define quality of a spectrum as the sum of 
PIIRS scores of peaks that correspond to amino acid tags. 
Continuous tags were rewarded more than discontinuous 
tags and overlapping tags were filtered out. Figure 4 shows 
ROC curves for the performance of the quality filter in 
classifying a set of 1000 manually labelled spectra. 
Sensitivity of over 99% was achieved with specificity of 
75%. We can also see how BMax lacks the robustness of  
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Figure 6. Spectrimilarity Score distribution between pairs 

of peptides from the same or different spectra.  
 
BMed and BA for this tool. Figure 5 shows the relationship 
between assignment rates and Quality. 
 
SPECTRIMILARITY 

In an experiment, the same spectra might be acquired 
several times. It is useful to group redundant spectra to 
shorten interpretation time and also to choose a highest 
quality representative spectrum to interpret. A similarity 
score between spectra serves as a starting point. NoDupe 
defined a similarity metric which was the dot product of the 
intensities of the peaks of the two spectra (after 
preprocessing) (Tabb et al., 2003). We define similar 
metrics,spectrimilarity, and spectrimilarity_prob, using PIIR 
scores rather than intensities.  Given two spectra, sp1 and sp2, 
with fragments fr1i, fr2i , spectrimilarity is defined as 
follows:  

spectrimilarity(sp1, sp2) = 
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spectrimilarity_prob(sp1, sp2)= 
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Figure 6 compares the spectrimilarity scores between pairs 

of spectra from the same peptide against the spectrimilarity 
scores between pairs of spectra from different peptides.  
Sensitivity of 95% and specificity greater than 92% was 
acheived at a threshold value of 0.2. 
 
MOD-PRO 

Global profiling of spectra can be done by looking for 
frequently observed mass differences in the spectra. We are 
also able to compare profiles from different samples to 
observe global differences such as modifications and amino 
acid compositions. For this, the spectra are preprocessed to 
remove peaks with low PIIR scores. The mass difference 
between each pair of peaks is tracked and a frequency 
diagram is constructed from these mass differences. For 
example, figure 7 compares the profile from a set of 
phospho-peptides against the profile from a set of colon 
cancer cell lines. By studying a Mod-Profile we are able to  

 
Figure 7. Mod-Profiles of a colon cancer sample, and a 

phosphopeptide sample 
 

know which modifications to expect before conducting any 
protein identification searches.  
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