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ABSTRACT
Motivation: A powerful proteomics methodology couples
high-performance liquid chromatography (HPLC) with tandem
mass spectrometry and database-search software, such as
SEQUEST. Such a set-up, however, produces a large num-
ber of spectra, many of which are of too poor quality to be
useful. Hence a filter that eliminates poor spectra before the
database search can significantly improve throughput and
robustness. Moreover, spectra judged to be of high quality, but
that cannot be identified by database search, are prime can-
didates for still more computationally intensive methods, such
as de novo sequencing or wider database searches including
post-translational modifications.
Results: We report on two different approaches to assess-
ing spectral quality prior to identification: binary classification,
which predicts whether or not SEQUEST will be able to make
an identification, and statistical regression, which predicts a
more universal quality metric involving the number of b- and
y-ion peaks. The best of our binary classifiers can eliminate
over 75% of the unidentifiable spectra while losing only 10%
of the identifiable spectra. Statistical regression can pick out
spectra of modified peptides that can be identified by a de novo
program but not by SEQUEST. In a section of independent
interest, we discuss intensity normalization of mass spectra.
Contact: goldberg@parc.com

1 INTRODUCTION
Proteomics studies the entire complement of proteins in
a biological system, such as a cell or tissue, with the
aim of understanding the workings of the system in vari-
ous states. The techniques of proteomics (Liebler, 2001)
involve a sequence of complex steps, such as protein separ-
ation, digestion and identification, which must be developed
and optimized together in a ‘systems approach’ in order to
extract the maximum amount of information from the entire
pipeline. In this paper, we address the problem of improv-
ing the throughput of peptide identification by tandem mass
spectrometry (Aebersold and Goodlett, 2001). We describe
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algorithms for assessing the quality of a tandem mass spec-
trum before attempting to identify the peptide. This algorithm
can be used to prefilter spectra so that only reasonably good
spectra are sent to time-consuming, database-search identi-
fication programs, such as SEQUEST (Eng et al., 1994) and
Mascot (Perkins et al., 1999). The algorithm can also be used
as a post-filter to identify high-quality spectra that warrant
even more time-consuming analysis, such as SEQUEST with
a database of post-translational modifications (MacCoss et al.,
2002b), partial sequence identification using GutenTag (Tabb
et al., 2003b), or fully de novosequencing using programs,
such as Lutefisk (Taylor and Johnson, 2001). We report below
on successful de novosequencing of spectra that could not be
recognized by SEQUEST, a reversal of the usual situation in
which database-search methods outperform de novomethods.

In a previous related work, Tabb et al. (2001) discuss spec-
tral quality assessment and mention a number of simple rules
for prefiltering, such as minimum and maximum thresholds
on number of peaks and a minimum threshold on total peak
intensity. They state that such rules can remove 40% or more
of the bad spectra. The best algorithm described here can
remove 75% of the bad spectra while losing only 10% of the
high-quality (identifiable) spectra. Interestingly, the number
of peaks and their intensities—often used by experts to ‘eye-
ball’ spectra—had little classification power relative to more
detailed features such as the number of peak pairs differing
by amino acid masses. Thus, we find that quality assessment
is more easily done by a machine than by a human expert.

Finally, we note that a loss of 10% of the peptide iden-
tifications incurs a smaller loss in the number of protein
identifications. In a large-scale study of the Chlamydiapro-
teome, the filter of Section 2.2—applied in series after a simple
rule-based filter—lost only 5% of the correct peptides and
3% of the correct protein identifications. It removed an addi-
tional 44% of the bad spectra beyond those removed by the
simple filter, thus improving computer throughput by almost
a factor of two, and—surprisingly—reduced the number of
incorrect (non-Chlamydia) peptide and protein identifications
(by 8 and 12%, respectively) when searching against a large,
multispecies ‘distractor’ database.
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2 ALGORITHM DEVELOPMENT
We obtained 68 978 tandem mass spectra from a known
mixture of five proteins (rabbit phosphorylase a, horse cyto-
chrome c, horse apomyoglobin, bovine serum albumin and
bovine β-casein), digested with four different proteases
(trypsin, elastase, subtilisin and proteinase K), as described
previously (MacCoss et al., 2002a). Of the 68 978 spectra,
5678 were labeled Good, meaning that they were matched by
SEQUEST searching against the NCBI non-redundant protein
database with 907 654 entries, to one of the five proteins in the
mixture or to a likely contaminant such as keratin or one of the
enzymes used for digestion. For the purposes of this study,
the other 63 300 spectra were labeled Bad, although some of
these are high-quality spectra of variant or modified peptides.
Such a large proportion of Bad spectra is typical of Multi-
dimensional Protein Identification Technology (Washburn
et al., 2001), in which peptides eluted by two-dimensional
liquid chromatography are electrosprayed continually into a
mass spectrometer. The MS instrument used for these spectra
(LCQ-Deca, ThermoFinnigan) is an ion-trap instrument with
a lower m/z (mass over charge) cut-off ∼200–300 Da, and a
resolution of ∼0.3 Da at m/z ∼ 1000. (Here and elsewhere
we informally write Da instead of Daltons per unit charge.)

Broadly speaking there are two competing approaches to
developing an automatic classifier. The traditional approach
devises a number of handcrafted features incorporating human
knowledge; whereas, the more modern approach feeds less
processed, high-dimensional data into a classifier algorithm,
such as support vector machines (SVMs), that can in effect
learn features from the data. We tried both approaches, report-
ing on handcrafted features in Section 2.2 and SVMs in
Section 2.3. For the regression problem (Section 2.4) of pre-
dicting a continuous quality metric rather than simply Good or
Bad, we reused the handcrafted features rather than attempt-
ing to learn features. Before describing these experiments,
however, we delve into an issue common to all MS/MS
analysis problems.

2.1 Intensity normalization
Intensity of peaks is widely recognized as highly variable from
spectrum to spectrum (Havilio et al., 2003). Consequently
there is no agreed-upon way to incorporate intensity informa-
tion into algorithms. SEQUEST (Eng et al., 1994) uses only
the largest 200 peaks and scores only the presence/absence of
peaks, using two different constants for b- and y-ions. Havilio
et al. (2003) develop an intensity-based scoring algorithm
and claim significant improvement over SEQUEST. Intensity-
based scoring, however, is not easy. Raw intensities are too
variable to be used, with maximum and total intensities vary-
ing over two or three orders of magnitude within the Good

data. Relative intensities (i.e. raw intensities divided by total
intensity) as used by Havilio et al. are better, yet still too vari-
able, because a single strong peak or a low background of
noise peaks often shifts values by a factor of two or three.

Fig. 1. The bumpy increasing line gives the probability that a peak
of a given relative intensity turns out to be a b- or y-ion. For this line
the x-axis is in hundredths of percentage, that is, 50 means 0.5% of
the total ion intensity is in this peak. (The bin size was picked to give
a curve that runs over roughly the same 0.1–0.8 range as the rank
curve.) The y-axis shows (#b + #y)/(#b + #y + #?), where #b is
the number of b-ion peaks of a given intensity (out of 1416 identified
spectra), #y is the number of y-ion peaks and #? is the number of
unidentified peaks. Other identified peaks (isotopes, a-ions, water or
ammonia losses, internal fragments) were not counted in the prob-
ability. The less bumpy decreasing curve gives the probability that
a peak of a given rank (rank 1 = most intense) turns out to be a
b- or y-ion. The smooth curve is an exponential function shown for
comparison. The fact that rank gives a less bumpy curve than relative
intensity argues for improved (lower variance) probability estimation
from rank.

For maximum robustness, we chose to use rank-based
intensity normalization rather than relative intensities, where
the most intense peak has rank 1, the second most intense has
rank 2, and so forth. Figure 1 compares how well rank and rel-
ative intensities correlate with an a posteriori measure of peak
quality, computed on the Good spectra in the training set: the
probability that the peak is a b- or y-ion. Each spectrum has
peaks of all ranks (at least up to rank 200 or so) but spectra
differ considerably in relative intensities, and hence estima-
tion of probability from rank has much lower variance than
estimation from relative intensity. This advantage of rank over
intensity extends to probability-based scores and features.

Moreover, Figure 1 justifies a particularly simple way to
use ranks. The plot of rank versus probability fits a negative
exponential function quite well. Thus the contribution of peak
x to a probabilistic scoring function as advocated in the liter-
ature (Bafna and Edwards, 2001; Dančik et al., 1999; Havilio
et al., 2003; Tabb et al., 2003a) should be proportional to a
constant plus 1/Rank(x), in order that a sum of contributions
is equal to a constant plus the log-likelihood that the peaks in
the sum are indeed b- and y-ions.
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2.2 Classification using handcrafted features
Following the discussion above, our handcrafted features all
use a normalized intensity of the form

NormI (x) = max{0, C1 − (C2/MaxmZ) · Rank(x)},
where MaxmZ is the maximum significant m/z-value in the
spectrum, and C1 and C2 are constants. The MaxmZ term
means that generally more peaks are considered for longer
peptides.

We learned values for C1 and C2 for each feature separ-
ately, by picking the C1 and C2 values that gave the best
discrimination between Good and Bad in the training set.
For example, C1 = 28 and C2 = 400 for the Good-Diff Frac-
tion feature, meaning that NormI (x) is greater than zero if
Rank(x) ≤ 140 when MaxmZ = 2000, a typical value. Gen-
erally C1 and C2 were about the same for different features,
with the exception of the Isotopes feature which used peaks
of much lower rank. Evidently, the fact that a peak has appro-
priate m/z and intensity relative to another peak increases the
likelihood that the peak is meaningful.

Each spectrum is mapped to a feature vector (f1, f2, . . . , f7),
a point in R

7, where fi is the value of the i-th feature below.

(1) Npeaks. The number of peaks in the spectrum. This
feature is often recommended (Kinter and Sherman,
2000; Tabb et al., 2001) for human assessment of
spectrum quality.

(2) Total Intensity. The sum of the raw intensities of the
peaks in the spectrum.

(3) Good-Diff Fraction. This feature measures how likely
two peaks are to differ by the mass of an amino acid.
Let

GoodDiffs =
∑{

NormI (x) + NormI (y)|M(x) − M(y)

≈ Mi for some i = 1, 2, . . . , 20
}
,

where M(x) is the m/z-value of peak x and
M1, M2, . . . , M20 are the amino acid masses (not all of
which are unique). The comparison implied by ≈ uses
a tolerance, which was set to 0.37 Da for our ion-trap
spectra. Now let

TotalDiffs =
∑ {

NormI (x) + NormI (y) | 56

≤ M(x) − M(y) ≤ 187
}
.

Then f3 = GoodDiffs/TotalDiffs.

(4) Isotopes. The total normalized intensity of peaks with
associated isotope peaks. That is,

∑ {
NormI (x) | M(x) ≈ M(y) − 1 and I (x)

≈ Expected Intensity of + 1 Isotope
}
.

(5) Complements. The total normalized intensity of pairs
of peaks with m/z-values summing to the mass of the
parent ion. The feature is computed assuming both +2
and +3 charge states for the parent ion (i.e. two different
MParent masses) and the larger feature value is used; the
same technique is used in the program 2–3 to determine
charge state (Sadygov et al., 2002).
∑{

NormI (x)+NormI (y) | M(x)+M(y) ≈ MParent
}
.

(6) Water Losses. The total normalized intensity of pairs
of peaks with m/z-values differing by 18 Da.
∑ {

NormI (x) + NormI (y) | M(x) − M(y) ≈ 18
}
.

(7) Intensity Balance. The m/z range is divided into 10
equal-width bands between 300 Da and the largest
observed m/z. The feature is the total raw intensity
in the two bands with greatest intensity minus the total
raw intensity in the seven bands with lowest intensity.

For classification we used Quadratic Discriminant Analysis
(QDA), a classical method that models feature vectors of each
class by multivariate Gaussian distributions and thus deter-
mines quadratic decision boundaries between Good and Bad.
This simple method tends to perform surprisingly well (Hastie
et al., 2001), especially with summation features such as ours
that have approximate Gaussian distributions due to the central
limit theorem.

We trained two separate classifiers, one for singly charged
parent ions and one for multiply charged. Training a QDA
classifier involves computing the means and covariance mat-
rix for the features; we removed outlying feature vectors (if
the value of any feature fell in the top or bottom 1% for that
feature) in order to make the fitting more robust. For feature
selection, we tested all subsets of the set of features, and chose
the one that gave the best binary classification performance
on the training set (one-fourth of Good and one-eighth of
Bad). We imposed an Occam’s razor: a subset of features
was preferred if its percentage of correct classifications (both
Good and Bad) was within 0.5% that of the superset. We
adjusted the threshold on the decision surface (an isosurface
for probability ratio) so that 90% of the Good spectra were
classified good; users could of course adjust this threshold
depending upon their requirements, e.g. using less aggressive
filtering for one-dimensional high-performance liquid chro-
matography (HPLC), which does not produce as many spectra
as two-dimensional HPLC. In developing the classifiers, we
did not use the test set until reporting final results, a purity of
approach afforded by the great amount of data.

The binary classifier for the singly charged spectra used four
features: Good-Diff Fraction, Complements, Water Losses
and Balance. The binary classifier for the multiply charged
spectra used four slightly different features: Good-Diff Frac-
tion, Isotopes, Water Losses and Balance. The results on the
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Fig. 2. The results with handcrafted features. True classifications
are on the left; e.g. 89.9% of the singly charged Good spectra were
called Good by our binary classifier.

test set (3/4 of Good and 7/8 of Bad) are given in Figure 2.
Error rates on the test set were essentially identical to those on
the training set. The classification problem for spectra from
singly charged parent ions is slightly more difficult than for
multiply charged parent ions, due to the generally poor frag-
mentation of singly charged parent ions (Kinter and Sherman,
2000).

A binary classifier that uses only Npeaks and Total
Intensity—the two features most often used by experts in
quick manual assessment—gives much weaker results: only
54% rejection of Bad spectra when 90% of the Good spectra
are classified good.

2.3 Classification with SVMs
Motivated by the success of features involvingm/z differences
between peaks (Good-Diff Fraction, Isotopes, etc.), we used a
histogram of m/z differences as the input to an SVM classifer.
For our first SVM experiment, we created from each spectrum
a vector of length 187 (the maximum mass of an amino acid
residue) with bins for m/z differences of [0.5, 1.5], [1.5, 2.5],
and so forth up to [186.5, 187.5]. The entry in histogram bin
i is a sum over all peak pairs in the spectrum:

Hist(i) =
∑ {

min{1/Rank(x), 1/Rank(y)}|M(x)

− M(y) ∈ [i − 0.5, i + 0.5]}.

This expression differs from Good-Diff Fraction in
using min{1/Rank(x), 1/Rank(y)} rather than NormI (x) +
NormI (y). The difference between the expressions 1/Rank(x)

and 1/NormI (x) is inconsequential here, just shifting
everything by a linear transformation. There is a difference
between the sum and the minimum; we chose the minimum
because it gave better SVM classification performance. We
also tried using raw intensities instead of 1/Rank(x) in order
to test whether intensity normalization is even necessary for
SVM input data; perhaps the SVM can learn an even bet-
ter normalization. We found that 1/Rank(x) normalization
was helpful after all, improving classification performance
by 2–3%.

For the SVM experiment, which takes significant training
and testing time, we did not separate the spectra into singly and

Fig. 3. The results with SVM classifiers.

Fig. 4. Receiver operator characteristic (ROC) curves for the SVM
classifiers show the trade off between false positives and false neg-
atives. For example, if 15% loss of Good spectra is acceptable, then
almost 80% of the Bad spectra can be removed, but if 5% loss of
Good spectra is the maximum acceptable, then only ∼60% of the
Bad spectra can be removed. (Numbers do not exactly match Fig. 3,
because the width parameter gamma for the radial basis function
kernel was changed in order to make more complete ROC curves.)

multiply charged data sets. We used SVM-Light (Joachims,
1999) and trained on 1/4 of the Good spectra and 1/32 of
the Bad spectra; ∼30% of the training vectors ended up as
support vectors. To speed up the experiments, we tested on
three-fourth of the Good data and only one-fourth of the Bad.
We used radial basis functions, and experimented to find a
good value (500) for gamma, the width parameter of the basis
functions. We used the default penalty value for training set
errors, and we adjusted the relative costs of the two types
of errors in order to obtain 90% correct classification of the
Good spectra.

Figures 3 and 4 gives results for our SVM experiments.
In addition to difference histograms with 1-Da bins from
1 to 187, we also tried some larger difference histograms:
1-Da bins from 1 to 384 and 0.5-Da bins from 1 to 187.
The SVM approach gives appreciably better results than the
handcrafted-feature approach, with performance improving
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slightly with increasing size of input vectors. Of course the
running time becomes quite a bit slower as the size increases.
In general, the SVM classifiers are slower than the QDA clas-
sifiers, although not as slow as running SEQUEST itself. The
fastest SVM classifier (1-Da bins from 1 to 187) takes 362 s to
process 20 000 spectra, whereas the QDA classifier takes 114 s
to process the same spectra. SEQUEST takes ∼1 s per spec-
trum using a small (1 MB) database and ∼15 s per spectrum
on a large (100 MB) database.

2.4 Regression
A binary classifier is sufficient for filtering spectra in order
to improve SEQUEST throughput, but we are also interested
in the problem of assigning a numerical quality score to each
spectrum, in order to prioritize the high-quality unidentified
spectra for further processing. This is a regression problem,
as it attempts to predict a continuous measure rather than a
binary variable.

We defined the continuous measure of quality to be the
fraction of b- and y-ions observed among the peaks of high
intensity. More specifically, letting Length denote the number
of amino acids in the peptide, we define

Quality = 1
2 (#b + #y)/(Length − 1),

where #b is the number of b-ion peaks with rank < 6 · Length
and #y is the number of y-ion peaks with rank < 6 · Length.
We can compute this measure with an a posteriorianalysis
of the Good spectra. We experimented with other defini-
tions of Quality, e.g. an analogous definition using normalized
intensity rather than simply presence/absence of peaks, and
another definition that penalized for unidentified peaks. The
various definitions of Quality gave similar results. We settled
on the definition above because it is most interpretable by
humans; the feature runs from 0 to 1.0, from no b- and y-ions
observed to all possible b- and y-ions observed. In addition,
many peptide identification programs, both database-search
and de novo, rely on presence/absence of b- and y-ions rather
than some sort of normalized intensity.

We next ran a multivariate linear regression with the seven
handcrafted classification features as explanatory variables
and Quality as the response variable, in order to determ-
ine a linear combination of the features that is predictive of
spectrum quality. [We used the handcrafted features rather
than SVM regression (Vapnik, 1996), because our interest
was in proof of concept rather than performance numbers,
which we had no good means to assess.] The multivariate
linear regression gave only two of the classification features
(Good-Diff Fraction and Complements) highly significant
non-zero coefficients as judged by P -values. The R2 value
for the regression was 0.537, which means that the linear
combination has correlation coefficient

√
0.537 ≈ 0.73 with

Quality, not overwhelming but certainly high enough to be
useful.

Fig. 5. Top five Lutefisk identifications for the best Bad spectrum.

The regression identified thousands of Bad spectra with
predicted Quality scores better than the average Quality of
Good spectra, which was ∼0.28, meaning that only 28% of
all possible b- and y-ions appeared among the best-ranking
peaks in the spectrum. We submitted the six best Bad spectra
(all with predicted Quality over 0.44) to Lutefisk (Taylor and
Johnson, 2001), a de novopeptide sequencer. On two of the six
spectra, Lutefisk gave partial sequences that could be uniquely
matched by BLAST to bovine serum albumin. Figure 5 illus-
trates one of these successes; a bracketed number indicates
a ‘mass gap’, meaning unidentified residues, possibly with
modifications, totaling that mass.

A BLAST search with MDKEACFAVE gives a match
with bovine serum albumin, which has a subsequence of
ENFVAFVDKCCAADDKEACFAVEGPK. The letters GP per-
fectly fill the mass gap of 154.1 Da, so we could be fairly
confident of the identification even without knowing that
bovine serum albumin was one of the proteins in the mix-
ture. No suffix of the correct sequence ENFVAFVDKCCAAD,
however, sums to the same mass as [430.2]GSTWW[210.2]EM,
which means that all the peaks in the spectrum are shifted from
where they should be in an unmodified peptide from bovine
serum albumin. (Indeed Lutefisk recognized DKEACFAVE on
the basis of a ladder of y-ion peaks, with no help from b-ions.)
Thus this spectrum is likely to be from a modified or variant
peptide.

3 CONCLUSION
The example of finding a modified peptide by using our
quality regression program, along with SEQUEST and Lute-
fisk, illustrates how data analysis for proteomics depends upon
a suite of tools. We believe that spectral quality assessment
can play an important supporting role in a tool suite, maxim-
izing throughput and applicability of the more central tools.
Indeed the QDA filter of Section 2.2 is already in use in real-
world proteomics at the Scripps Research Institute. Quality
filters can help mine valuable information from very noisy
data; e.g. in the proteomics set-up described here over 90%
of the spectra are unidentifiable by SEQUEST. Finally, we
believe that quality assessment can also play a significant
role in tool development. Comparison of peptide identification
approaches would be enabled by a standard way to measure
the quality of spectra in different data sets.
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