TOPIC SELECTION

OUTLINE
- Stages of research process
- Key for topic selection
- Sources of research topics
- Four types of research topics

STAGES OF RESEARCH PROCESS
- Ideal process:
 - Identify field of interest
 - Identify possible topics
 - Create a thesis proposal
 - Undertake pilot study
 - Data collection
 - Data analysis
 - Writing up

- The reality:
 - May visit stages out of order
 - May run into dead ends at any stage
 - May backtrack to an earlier stage in the process and try again
 - May revisit stages in different contexts

KEY FOR TOPIC SELECTION
- Three necessary properties of a good research topic:
 - You can do it
 - It hasn't been done
 - It is worth doing

WHAT YOU CAN DO
- Need to be answered through self-examination
 - What are your knowledge, experience, strengths, & weaknesses?
 - Math, algorithm, data analysis, theory?
 - What are your interests & passion?
 - Much harder to work on a topic that you feel boring
 - What is your end goal?
 - Complete MSc/PhD, publish journal/conference papers, find academic positions?
 - How much are you willing to commit?
 - Time, effort, financial resources, family sacrifices, etc.

WHAT HASN'T BEEN DONE
- Need to be answered through literature review
 - Cannot expect your supervisor knows the state-of-the-art
 - Conducting original research is a central part of MSc/PhD study
 - The reason why plagiarism is so despised in scientific research

- Identify the research gap
 - Conflicting views
 - Ineffective solutions
 - Problem no one exploring
WHAT IS WORTH DOING

• Need to consult your supervisor
• The topic should be non-trivial & has enough impacts/applications
 • No point to present something new but does not work as well as existing approaches
• Questions for your supervisor:
 • Is this topic worth doing?
 • Can it be achieved within a reasonable amount of time?
 • Is it part of his/her research interests?
 • If not, he/she will be unlikely to offer as much helpful advice

• Supervisor selected:
 • Typical for BSc & MSc research
 • Risk depends on how well the supervisor knows the topic & your ability to work on it
 • May not be your own interests
 • Can be completed quickly
 • Good for learning particular methods

• Self-selected:
 • Most typical type of PhD research
 • Riskier, as you need to evaluate originality, importance, & feasibility by yourself
 • Typically time-consuming & somewhat terrifying experience
 • Help you to become an independent researcher

BE OPEN-MINDED, BUT DON’T BE TOO BROAD

• Open mind on research area
 • Many students begin postgraduate study without a clear idea of exactly what they’re interested in studying
 • Try them out by taking courses from different areas
 • PhD breadth requirement is designed to introduce you to different topics

• Open mind on research goal
 • Do not be afraid of changing research goal
 • Be flexible on the approach you take even if you have a clear goal
 • Learn and try different methods
 • Analyze experimental results unbiasedly and follow up on unusual findings

FOUR TYPES OF RESEARCH TOPICS

• Verification/evaluation of existing methods for an existing problem
 • Rerunning an existing method to measure its performance
 • May require reimplementing them, if the original code is not available
 •Verify reproducibility (trustworthiness), which is a core aspect of science
 • Evaluating multiple methods under the same settings
 • Can make significant impacts
 • Involve developing new datasets and/or designing new evaluation metrics
 • Generally low-risk research topics
 • Often require lots of work on implementation/experiments
 • Example: evaluate binocular stereo matching algorithms

• New application of existing method
 • Follow the state-of-the-art technique & apply it to a different problem
 • Understand the merits of the technique and think about where else it can be applied
 • Importance & originality depends on the scope of the application
 • Most common research topics
 • Low- to moderate-risk research topics
 • Chance of success depends on how powerful the new technique is
 • Need to get results quickly as others may doing the same thing
 • Example: apply convolutional neural network to computer vision problems
DEVELOPMENT OF A NEW METHOD

- Design a new algorithm or significantly enhance an existing one
- Originality & importance depend on the advantages & applicability of the method
- Critical to apply it to the same applications that existing methods have been tested
- Show that the new method outperforms existing ones
- Often advance ongoing scientific research and are somewhat rare
- Moderate- to high-risk research topics:
 - Such work can be difficult to do
 - Developed algorithm may not work as well as existing ones
- Example: design the convolutional neural network

DEFINE A NEW RESEARCH DOMAIN

- Define a research problem, conduct pioneer research, & find solutions
- Such topics are typical of major scientific revolutions and hence are very rare
- Such topics are by definition original & important
- Very-high-risk research topics
 - Require deep insights in research in related fields
 - May not be doable or very difficult to do
- Example: text recognition, image understanding

WHERE TO LOOK FOR

- Open questions in existing work
 - What are the limitations of existing approaches?
 - What did authors say about future work?
 - If a topic is truly original, important, & doable, researchers may be reluctant to share
- Combination of elements of existing work
 - Question why/why not when reading papers
 - Discuss your thoughts with others in brainstorming sections
- Reference:
 - How to get a Ph.D.: a handbook for students and their supervisors (Phillips 1994)