Solid Modeling

Outline
- Why solid modeling
- Sweep representation
- Boundary representation
- Spatial-partitioning representation
 - Spatial-occupancy enumerations
 - Octrees
 - Binary space partitioning trees
- Constructive solid geometry

Why Solid Modeling
- Triangle mesh & surface patch models may not be watertight
- No information about inside & outside
- Some applications require the knowledge of the volume
- Collision detection
- Weight calculation for a mechanical part
- Ray tracing with refraction

Sweep Representation
- Sweep a shape along a trajectory gives a solid
- Translational sweep:
 - Produce by extrusion
 - Material is pushed or drawn through a die of desired cross-section
- Rotational sweep:
 - Produce by turning
 - Rotate material to cut the desired shape
- Generalized sweep

Boundary Representation (B-Rep)
- Use a collection of connected surface elements to define the boundary between inside & out
- Involved surfaces are closed & oriented 2-manifolds embedded in 3-space
 - A surface is 2-manifolds if a small neighborhood around every point is topologically equal to a disk
 - A manifold surface is oriented if any path on the manifold maintains the orientation of the normal
 - An oriented manifold surface is closed if it partitions 3-space into points inside, on, & outside the surface

Invalid B-Rep
- Non-manifold surfaces:
 - Surface around a point divides the space into more than 2 parts
- Non-oriented manifolds:
 - The 2 sides of the same point are connected by a path on surface
- Examples: Moebius strip & Klein bottle
Topology Information

- **Vertex (V):**
 - A unique point in space

- **Edge (E):**
 - A finite, directed, & non-selfintersecting space curve bounded by 2 vertices

- **Loop (L):**
 - An ordered alternating sequence of vertices & edges defining closed & non-selfintersecting space curve

- **Face (F):**
 - A finite, connected, & non-selfintersecting region of a surface bounded by one or more loops

- **Body (B):**
 - A single, connected, & closed volume bounded by a set of faces

- **Genus (G):**
 - A hole or handle.

Validity Check for B-Rep

- The Euler's formula states that a polyhedra satisfies:
 - \(V - E + F = 2 \)

- A general solid (may has holes) satisfies:
 - \(V - E + F - H = 2(B - G) \)

 - \(H \) (hole) is the number of inner loops

Solid cube:
- \(V=8, E=12, F=6, H=0 \)
- \(B=1, G=0 \)

Cube w/ dent:
- \(V=16, E=24, F=11, H=2, B=1, G=0 \)

Cube w/ hole:
- \(V=16, E=24, F=10, H=2, B=1, G=1 \)

Spatial-Partitioning Representation

- Decompose space into a collection of regions that are labeled as being inside or outside the solid being modeled
 - Different regions are adjoining & nonintersecting
 - A family of approaches exist
 - Spatial-occupancy enumerations
 - Octrees
 - Binary space partitioning trees

Spatial-Occupancy Enumerations

- Partition 3D space using uniform grid & refer each cell as a voxel
 - Keep voxels inside the solid object
 - Or store transparency or density information at all voxels

 - Pros & cons:
 - Easy to process
 - Approximate true shape
 - High storage cost

Octrees

- Partition 3D space adaptively, instead of uniformly
 - If a cell is completely inside or outside of an object, no need to further split it

 - Pros & cons:
 - Lower storage cost
 - More efficient & concise
 - Harder to process

Binary Space Partitioning Trees

- Recursively partition 3D space using arbitrary planes, instead of only orthogonal ones
 - Mark leaf cells as inside or outside

 - Pros & cons:
 - Elegant & precise
 - Representation for an object is not unique
 - Efficiency depends on tree depth
Constructive Solid Geometry (CSG)

- Represent a solid as a result of regularized Boolean operations over primitives
- Output is guaranteed to be a solid if all primitives are solids
- Easy to adjust the final model by changing the transformations or the Boolean operators
- Useful for modeling mechanical parts

Hierarchy for Boolean Operations

- The root is the final complex model
- Internal nodes are Boolean operators or transformations
 - Union, intersection, & difference
 - Translation, rotation...
- Leaf nodes are solid primitives
 - Sphere, cylinder, cone, torus
 - Cube, prism, pyramid

A Union B

If \(a_{in} < a_{out} < b_{in} < b_{out} \)
- \([a_{in}, a_{out}] \cap [b_{in}, b_{out}]\)
- \([a_{in}, b_{out}] \cap [b_{in}, b_{out}]\)
- \([a_{in}, a_{out}] \cap [b_{in}, b_{out}]\)
- \([a_{in}, a_{out}] \cap [b_{in}, b_{out}]\)
- \([a_{in}, b_{out}] \cap [b_{in}, b_{out}]\)
- \([a_{in}, b_{out}] \cap [b_{in}, b_{out}]\)
- \([a_{in}, b_{out}] \cap [b_{in}, b_{out}]\)

A Intersection B

If \(a_{in} < a_{out} < b_{in} < b_{out} \)
- \(null\)
- \([a_{in}, b_{out}] \cap [b_{in}, b_{out}]\)
- \([b_{in}, a_{out}] \cap [b_{in}, b_{out}]\)

A Difference B

If \(a_{in} < a_{out} < b_{in} < b_{out} \)
- \([a_{in}, a_{out}] \cap [b_{in}, b_{out}]\)
- \([a_{in}, b_{out}] \cap [b_{in}, b_{out}]\)
- \([a_{in}, a_{out}] \cap [b_{in}, b_{out}]\)

Comparison of Representations

- Accuracy:
 - Spatial-partitioning approaches produce only approximations for many objects
- Domain:
 - The domain of objects can be represented by sweeps is limited
- Uniqueness:
 - Only octree & spatial-occupancy enumeration guarantee the uniqueness of a representation
- Validity:
 - The validity of B-rep is the most difficult one