Outline

- 3D viewing process:
 - Coordinate systems
- View specification:
 - Camera parameters
- View volume:
 - Clipping planes

3D Viewing Process

- Object coordinates
- Camera coordinates
- Clip coordinates
- Screen coordinates
- Raster coordinates
- World coordinates
- 3D transformation (model)
- 3D transformation (viewing)
- Camera coordinates
- 3D projection
- View clipping
- Perspective transformation (model)
- Perspective transformation (viewing)
- 2D transformation (viewport)
- Perspective division
- Clip coordinates

Object Coordinate System

- The local 3D coordinate system used for modeling individual objects
 - Contains the raw coordinates used for specifying the objects' shapes
 - Different objects may be defined under different measuring units

World Coordinate System

- The global 3D coordinate system used for modeling the virtual world (the scene to be rendered)
 - Objects defined in object coordinates are positioned into the virtual world through scaling, translation, & rotation

Camera Coordinate System

- The coordinate system that place the viewer at the origin with the view direction aligned with the Z axis
 - Normally set as a left hand system, with camera looking at the positive Z direction
 - Also called eye or view-reference coordinate system
Clip Coordinate System
- A homogenous coordinate system as the result of projection
- Obtained by multiplying camera coordinates with the projection matrix & clipping away objects out of the view volume
- All coordinates have limited range due to clipping

Screen Coordinate System
- A Cartesian coordinate system
- Results of perspective division on clipping coordinates
- All visible objects are projected into the interval: [-1,1]
- Independent to the rendering resolution
- Also called normalized device coordinate system

Raster Coordinate System
- The coordinate system defined based on the viewport used for display
- Mapped from the screen coordinates through scaling & translation
- Normally Y axis points downward
- Also called device or window coordinate system

View Specification Approaches
- Define transformation matrices directly:
 - Use a set of rotation & translation steps to convert from world to camera coordinates
 - Use perspective or parallel projection to convert from camera to screen coordinates
- Advantage:
 - Easy to implement
 - Define a virtual camera in the 3D scene:
 - Control the world-to-camera conversion using the camera’s external parameters
 - Control the camera-to-screen conversion using the camera’s internal parameters
- Advantage:
 - More user friendly

External Parameters
- Position:
 - Center of projection: COP
- Orientation:
 - View direction: V
 - Up direction: U
- The camera coordinate system:
 - \(Z' = V \)
 - \(X' = V \times U \)
 - \(Y' = X' \times V \)

Peudocode for Camera Setup
- void setupCamera(Vector pos, Vector view, Vector up){
 - Vector dx, dy, dz;
 - Matrix mat = new Matrix();
 - dx = view.normalize();
 - dy = dx.cross(up); // y = x \times z (left-hand system)
 - // generate the transformation matrix mat
 - mat.d00 = dx.x; mat.d10 = dx.y; mat.d20 = dx.z;
 - mat.d01 = dy.x; mat.d11 = dy.y; mat.d21 = dy.z;
 - mat.d02 = dz.x; mat.d12 = dz.y; mat.d22 = dz.z;
 - mat.d33 = 1;
 - mat.translate(- pos);
}
Internal Parameters

- Focal length:
 - Distance between the COP & the projection plane: \(f \)
 - Standard lens is 50mm
- Image (film) size:
 - Width & height: \(2w \times 2h \)
 - 36x24 for 35mm film
- Field of view:
 - Angle: \(\theta_h, \theta_v \)
 - \(\tan(\theta_v/2) = w/f \)

3D Projection Defined

\[
P = \begin{bmatrix} 1/s & 0 & 0 & 0 \\ 0 & 1/s & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix}
\]

- Parameter \(s \) is the maximal dimension of image plane
 \(s = \max(w, h) \)

Clipping

- Points on the \(z=0 \) plane cannot be projected
 - The weight is zero after projection
 - Mapped to infinity
 - Have to eliminate the portion of scene that is behind the viewpoint before projection
 - To cut computational cost, we can also eliminate all objects that are outside the viewing volume

Clipping Planes

- Back clipping plane:
 - Also called far clipping plane or yon plane
 - Sometime at infinite
 - Remove objects too far, whose projections are too small
- Front clipping plane:
 - Near clipping plane or hither plane
 - Remove objects that are behind or too close to the COP

View Volume

- Definition:
 - The portion of the world that projects into the normalized window on the projection plane
 - Perspective projection
 - Truncated pyramid
 - Parallel projection
 - Parallelepiped

Clipping Planes (Cont’d)

- Surrounding planes:
 - Defined by the four edges of the image
 - Clipping with these planes is performed in clip coordinates by comparing \((x,y,z)\) with \(\pm w \)