Outline

- Classification of projections
 - Geometric vs. non-geometric projections
 - Planar vs. non-planar projections
 - Planar geometric projection
 - Parallel projections
 - Perspective projections

Geometric vs. Non-geometric

- Geometric projection:
 - All projectors are straight lines
- Non-geometric projection:
 - Projectors can be curves
 - Useful for simulating the effect that lights are bended by black holes in space

Planar vs. Non-planar

- Planar projection:
 - The projection surface is plane
- Non-planar projection:
 - Projection surface can be general shapes
 - Cylindrical panorama uses cylinder
 - Circular panorama uses sphere

Planar vs. Non-planar (Cont’d)

- Planar projection:
 - Limited field of view
 - Preserve straight lines
- Non-planar project:
 - Does not preserve straight lines

Planar Geometric Projection

- Parallel
- Perspective
 - Orthographic
 - Elevation
 - Top, Front, & Side
 - Axonometric
 - Isometric, Dimetric, & Trimetric
 - Oblique
 - Cavalier & Cabinet
Parallel Projection
- Different projectors parallel to each other
- Preserve parallelism
- Orthographic:
 - Projectors are perpendicular to the projection plane
- Oblique:
 - Projectors are NOT perpendicular to the projection plane

Orthographic Projection
- Elevation:
 - Projectors are parallel to a principle axis
 - Projection plane is parallel to xy, xz, or yz plane
- Axonometric:
 - Projectors are NOT parallel to any principle axis

Elevations
- Used for:
 - Engineering drawings
 - Architecture drawings
- Advantage:
 - Preserve distance and angle
 - All views are at same scale
- Disadvantage:
 - Hard to understand the 3D shape even all three elevations are given

Matrix Representation for Elevations

Axonometric Projection
- Isometric:
 - Angles between the projector and all 3 principal axes are equal (≈55°)
- Dimetric:
 - Angles between the projector and 2 of the 3 principal axes are equal
- Trimetric:
 - All 3 angles are different

Isometric Projection
- Used for:
 - Patent office records;
 - Furniture design;
 - Video games (SimCity)
- Advantage:
 - Illustrates 3D nature of object
 - Preserve distance along principal axes
- Disadvantage:
 - Do not preserve angle
Oblique Projection
- Essentially an XY-shear transformation
- Preserve shapes along the XY plane

\[P = \begin{bmatrix} 1 & 0 & \cos \phi & 0 \\ \tan \alpha & 0 & 0 & 0 \\ 0 & 1 & \sin \phi & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

Cavalier & Cabinet Projections
- Oblique projections with special \(\alpha \) angles
 - Cavalier:
 - \(\alpha = 45^\circ \)
 - \(u = x + z \cos(\phi) \)
 - \(v = y + z \sin(\phi) \)
 - Cabinet:
 - \(\alpha = \tan^{-1}2 \approx 63^\circ \)
 - \(u = x + z \cos(\phi)/2 \)
 - \(v = y + z \sin(\phi)/2 \)
 - The \(\phi \) angle is usually 30° or 45°

Perspective Projection
- Different projectors converge to the center of projection
- Does not preserve parallelism
- Foreshortening effect:
 - Objects further from the center of projection appear smaller

Vanishing Point
- Projections of lines that are parallel to a principle axis may converge to a vanishing point
- Based on the number of vanishing points, projective projection is classified into one, two, or three-point projections

One-point & Two-point Projections
- One-point projection:
 - The projection plane is parallel to two of the principle axes
 - One vanishing point
- Two-point projection:
 - The projection plane is parallel to only one of the principle axes
 - Two vanishing points

Matrix Representation
- Configuration:
 - Center of projection is placed at (0,0,0)
 - Projection plane is placed along z = f
 - For 3D point \((x,y,z,1)\):
 - \(w = z / f \)
 - \(u = x / w = x^* f / z \)
 - \(v = y / w = y^* f / z \)

\[
P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix}
\]