Outline
• Define 3D coordinates
• Homogeneous coordinate
• 3D transformations
 • Translation
 • Scaling
 • Rotation
 • Shear
 • Euclidean
 • Affine

3D Transformation

Outline
• Define 3D coordinates
• Homogeneous coordinate
• 3D transformations
 • Translation
 • Scaling
 • Rotation
 • Shear
 • Euclidean
 • Affine

3D Coordinates
• Left-handed
 • Default in RenderMan
• Right-handed
 • Default in OpenGL
 Negate any single axis

Homogeneous Coordinate
• Represent 3D point in 4D space
 Coordinates: \((x, y, z, w)\)
 Normalized coordinates: \((x/w, y/w, z/w, 1)\)
 Plane at infinity is identified with the set of points with \(w=0\)
• Represent 3D transformation using 4×4 matrices

Translation
• Move an object to a new location

Scaling
• Adjust the size of the object
Rotation about Z Axis

- Z coordinate unchanged
- X & Y coordinates follow 2D rotation

\[
R_z(\theta) = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Rotation about X Axis

- X coordinate unchanged
- Y & Z coordinates follow 2D rotation

\[
R_x(\theta) = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{bmatrix}
\]

Rotation about Y Axis

- Y coordinate unchanged
- X & Z coordinates follow 2D rotation
 - Sign of \(\sin(\theta) \) is negated since Z axis points downward

\[
R_y(\theta) = \begin{bmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{bmatrix}
\]

3D Rotation is Not Commutative

- Rotating about X axis by \(\alpha \) then about Y axis by \(\beta \) is not the same as rotating about Y axis by \(\beta \) then about X axis by \(\alpha \)

\[
R_x(\alpha)R_y(\beta) = \begin{bmatrix}
\cos \phi & \sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Rotate about Arbitrary Direction

- Rotating about an arbitrary direction \((x, y, z)\) by \(\theta \) can be achieved by combining multiple rotations
- Rotate about X & Y axis to align \((x, y, z)\) with Z axis
- Rotate \(\theta \) about Z axis
- Rotate about X & Y axis to restore \((x, y, z)\) direction

Let \(c = \cos(\theta) \), \(s = \sin(\theta) \), \(t = 1 - c \)

\[
R(\theta, x, y, z) = \begin{bmatrix}
x't + c & xy't - zs & xz't + ys \\
y't + cz & y'y't + c^2 & yz't - xs \\
xz't - ys & yz't + xs & z'^2 + c
\end{bmatrix}
\]

Representing Arbitrary Rotation

- Using 3x3 matrix:
 - Requires 9 numbers
 - \(R(\theta, x, y, z) \) only has 3 degrees of freedom (DOF)
 - 2 DOF for unit vector \((x, y, z)\)
 - 1 DOF for angle \(\theta \)
 - Problem:
 - Too much redundancy
 - Not all matrices are valid rotations
 - Use Euler angles:
 - Decompose \(R(\theta, x, y, z) \) into 3 elemental rotations (rotations around a single axis)
 - Store the angles \((\alpha, \beta, \gamma)\) used for these rotations
 - Require 3 numbers
 - Problem:
 - Hard to interpolate between 2 rotations
Quaternion Representation

- Use a unit quaternion \((\cos(\frac{\theta}{2}),\sin(\frac{\theta}{2})V)\) to denote rotating about a unit vector \(V\) by \(\theta^\circ\)
- Require 4 numbers
- Advantages:
 - Concatenating 2 rotations can be done by quaternion multiplication
 - Faster & numerically more stable.
 - Extracting the angle & axis of rotation is simple
 - Interpolation between 2 rotations is more straightforward
 - Use spherical linear interpolation (slerp)

Quaternion to Matrix Representation

- The quaternion representation can be easily converted into matrix representation
- Converting back requires solving quadratic equations

Composition of 3D Transformations

- How to rotate about edge \(PQ\) by \(\theta^\circ\)?
 - Translate \(P\) to origin
 - Rotate about direction \(PQ\) by \(\theta^\circ\)
 - Translate the origin back to point \(P\)
- Net transformation:
 \[T(P_x,P_y,P_z) \cdot R(\theta,Q-P) \cdot T(-P_x,-P_y,-P_z) \]

Euclidean (Rigid Body) Transformation

- The product of any translation & rotation matrices
 \[\begin{pmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \]
 - Submatrix \(R\) gives the aggregated rotation
 - 3 DOF
 - Vector \(T\) gives the aggregated translation
 - 3 DOF
 - Preserve lengths, angles, & parallelism
 \[P' = MP = RP + T \]

Affine Transformation

- The product of any translation, scaling, rotation, & shear matrices
 \[\begin{pmatrix} a_{11} & a_{12} & a_{13} & t_x \\ a_{21} & a_{22} & a_{23} & t_y \\ a_{31} & a_{32} & a_{33} & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \]
 - Submatrix \(R\) gives the aggregated rotation, scaling & shearing
 - 9 DOF
 - Vector \(T\) gives the aggregated translation
 - 3 DOF
 - Preserve parallelism
 \[P' = MP = AP + T \]