Feature-Based Warping

Outline
- Feature-based warping
- Mapping relations
 - Under single pair of control line segments
 - Under multiple pairs of control line segments

Feature-Based Warping

- Proposed by Beier & Neeley
- Part of their feature-based morphing algorithm
- Basic ideas:
 - Use line segments to define features
 - Backward warping is used

Advantages of Feature-Based Approach
- Function-based:
 - The mapping relationship is specified using a global function
 - Any change to the function affects the whole image
 - Hard to design a function that can achieve a given effect
- Feature-based:
 - The mapping relationship is specified using control line segments
 - User can control where each feature in the image warps to
 - Easy to specify a warping effect through human interaction

Mapping Relation
- A control line segment in the destination image defines a local coordinate
 - Pixel p is converted to local coordinate (u, v)
 - Corresponding control line in the source image also defines a local coordinate
 - The same (u, v) is used to find pixel P'

Local Coordinate
- Defined by the control line and the direction perpendicular to the line
 - v is a distance:
 - Signed distance between point and the control line
 - u is a ratio:
 - Relative position of the point along the line
Vector Representation

- Coordinates of a point can be represented as a 2D vector:
 - \(A = (A_x, A_y) \)
- Length (\(l^2\)-norm):
 - \(|A| = \sqrt{A_x^2 + A_y^2} \)
- Vector arithmetic:
 - \(A + AB = B \)
 - \(B - A = AB \)
- Dot product:
 - \(A \cdot B = A_xB_x + A_yB_y \)

Global to Local

- Calculate \(u \):
 - \(|AQ| = (P-A) \cdot (B-A) / |AB| \)
 - \(u = |AQ| / |AB| \)
 - \(u = (P-A) \cdot (B-A)|AB|^2 \)
- Find direction \(D \) that is perpendicular to \(AB \):
 - \(D_x = (B_y - A_y) \)
 - \(D_y = -(B_x - A_x) \)
 - \(D = D / |D| \)
- Calculate \(v \):
 - \(v = (P-A) \cdot D \)

Local to Global

- Find direction \(D' \) that is perpendicular to \(A'B' \):
 - \(D'_x = (B'_y - A'_y) \)
 - \(D'_y = -(B'_x - A'_x) \)
 - \(D' = D' / |D'| \)
- Calculate \(P' \):
 - \(P' = A' + u \cdot (B' - A') + v \cdot D' \)

Warping Effects (Translation)

- The corresponding control lines:
 - Same lengths
 - Same directions
 - Different positions

Warping Effects (Scale)

- The corresponding control lines:
 - Same directions
 - Different lengths

Warping Effects (Rotation)

- The corresponding control lines:
 - Same lengths
 - Different directions
Multiple Control Lines

- When more than one control lines are defined:
 - Each control line is used to compute a candidate point
 - Different candidate points are weighted-averaged to get the corresponding point

![Diagram of Multiple Control Lines]

Weighted Average

- Motivations:
 - Longer control lines have stronger control
 - Closer control lines have stronger control
- Weight function: \(w_i = \left(\frac{l_i}{a + d_i} \right)^b \)
 - \(l_i \): length of control line \(i \);
 - \(d_i \): distance between point and control line \(i \);
 - \(a, b, c \): adjustable parameters
 - Suggested setting: \(a=0.0001; b=1; c=2; \)
- Final corresponding point:
 \[P' = \frac{\sum (P_{i'} \cdot w_i)}{\sum w_i} \]

Distance Calculation

- The closest distance between a point & the line segment
 - NOT the line
- Algorithm:
 - if \(u < 0 \)
 \[d = |P-A| \]
 - else if \(u > 1 \)
 \[d = |P-B| \]
 - else
 \[d = |v| \]

Warping Effects (Two Control Line Segments)

- Under two control line segments:
 - Both line segments try to control the warping effects
 - The final result is a compromise between the two control features

![Diagram of Warping Effects]

Pseudocode

- for (each pixel \(P \) in the destination image) {
 \[\sum_P = (0,0); \sum_w = 0; \]
 - for (each control line \(i \) in destination image) {
 - \((u,v) = \text{transfer } P \text{ to the local coordinate of line } i;\)
 - \(w = \text{weight calculated based control line } i; \)
 - \(P_{\text{src}} = \text{global coordinate of } (u,v) \text{ in source image}; \)
 - \(\sum_P += P_{\text{src}} \cdot w; \sum_w += w; \)
 - }
 \[P_{\text{src}} = \frac{\sum_P}{\sum_w}; \]
 \[\text{destination}(P) = \text{sampleSource}(P_{\text{src}}); \]
}

![Diagram of Pseudocode]