Warping & Sampling

Outline
- Mapping function:
 - Forward warping
 - Backward warping
- Re-sampling:
 - Point sampling
 - Bilinear interpolation
 - Gaussian filtering

What is Image Warping
- Distort the original image by moving pixels to new location.
- Define the mapping relation.
- Resample the original image.

Forward Warping
- \((s, t) = F(u, v)\)
 - Describe the destination \((s, t)\) for every pixel \((u, v)\) in the source.
 - Map from known to unknown.
- If \(F\) is invertible:
 - \(G(x, y) = F^{-1}(x, y)\)
 - \(G\) is the corresponding backward warping function.

Backward Warping
- \((u, v) = G(s, t)\)
 - Describe the source \((u, v)\) for every pixel \((s, t)\) in the destination.
 - Map from unknown to known.
- If \(G\) is invertible:
 - \(F(x, y) = G^{-1}(x, y)\)
 - \(F\) is the corresponding forward warping function.

Example: Magnify Function I
- Forward warping function:
 - \(r = (u^2 + v^2)^{1/2}\); \(s = u / r^2\)
 - \(t = v / r^2\)
 - Feature:
 - Preserve circles
- Inverse function:
 - \(r = (s^2 + t^2)^{1/2}\)
 - \(u = r * s\)
 - \(v = r * t\)
Example: Magnify Function II

- **Forward warping function:**
 - \[s = \sin(u \cdot \pi / 2); \]
 - \[t = \sin(v \cdot \pi / 2); \]
- **Feature:**
 - Preserve straight lines

Implementation Comparison

- // Forward warping:
 - for (int v=0; v<height; v++)
 - for (int u=0; u<width; u++)
 - \[s = F_x(u,v); \]
 - \[t = F_y(u,v); \]
 - \[destination(round(s), round(t)) = source(u, v); \]

- // Backward warping:
 - for (int t=0; t<height; t++)
 - for (int s=0; s<width; s++)
 - \[u = 2 \times \text{asin}(s) / \pi; \]
 - \[v = 2 \times \text{asin}(t) / \pi; \]

Difference?

- **Forward warping**
 - Iterate over source image.
 - More than one source pixels may map to same destination pixel.
 - Some destination pixels may not be covered.

- **Backward warping**
 - Iterate over destination image.
 - All destination pixels are covered.
 - How to resample source image?

Point Sampling

- Simply use the closest pixel.
 - \[\text{source}(u, v) = \begin{cases} \text{source}(\text{round}(u), \text{round}(v)) & \text{for } (u,v) \in \Omega \setminus \partial \Omega \setminus \emptyset \\ \text{linear interpolate} \end{cases} \]
- **Problems:**
 - Subject to blocky and aliasing artifacts.

Bilinear Interpolation

- Interpolate among nearby 4 pixels.
 - First interpolate along horizontal direction to obtain colors at positions A & B.
 - Then interpolate along vertical direction using A & B.
 - Result is weighted sum of the 4 pixels' colors.
 - Closer pixel has higher weight.
Pseudocode for Bilinear Interpolation

```c
int x = floor(u);
int y = floor(v);
float color = source(x,y) * (x+1-u) * (y+1-v);
float color += source(x+1,y) * (u-x) * (y+1-v);
float color += source(x,y+1) * (x+1-u) * (v-y);
float color += source(x+1,y+1) * (u-x) * (v-y);
return color;
```

Aliasing Artifact

- Details in the source image are lost or become random noise.
- Due to locally decrease resolution (undersampling).
- Can be reduced by Gaussian filtering.

2D Gaussian Function

- **Definition:**

 \[Gau(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x-u)^2+(y-v)^2}{2\sigma^2}} \]

- **Parameters:**
 - \((u,v)\) is the center, where the function has the maximum value.
 - \(\sigma\) is the standard deviation, which controls the width of the “bell”.

Gaussian Filtering

- Compute weighted sum of neighboring pixels.
- Weights are normalized values of Gaussian function
- Number of neighbors involved depends on \(\sigma\).
- The larger the \(\sigma\) is, the more blurry the result is.

Pseudocode for Gaussian Filtering

```c
float Gaussian(float x, float y, float u, float v, float sigma) {
    float w = Gaussian(x, y, u, v, sigma);
    color += source(x, y) * w;
    sum += w;
}
```

Result Comparison