Outline

- Line generation problem
- Straightforward approach
- Midpoint line algorithm

Line Generation Problem

- How to display a straight line from (x_0, y_0) to (x_1, y_1) on a monitor?
 - Select pixels that are closest to the line
 - Do it efficiently
- Simplifications:
 - Lines are 1 pixel wide
 - No need for anti-aliasing

Line Equations

- Explicit representation:
 - $y = m \cdot x + b$
 - $m = \frac{\Delta y}{\Delta x}$ (slope)
 - $b = y_0 - m \cdot x_0$ (Y intercept)
- Parametric function:
 - $x = x_0 + k \cdot \Delta x$
 - $y = y_0 + k \cdot \Delta y$
- Implicit representation:
 - $F(x, y) = ax + by + c = 0$
 - $a = \Delta y, b = -\Delta x$
 - $c = \Delta x \cdot y_0 - \Delta y \cdot x_0$

Straightforward Approach I

- Based on explicit line representation
- Algorithm:
 - float $m = \frac{\Delta y}{\Delta x}$;
 - for (int $x=x_0$; $x<=x_1$; $x++$) {
 - float $y = y_0 + (x - x_0) \cdot m$;
 - draw(x, round(y));
 }
- Computational cost:
 - n times multiplication
 - $2n$ times addition/subtraction

Incremental Version

- Algorithm:
 - float $m = \frac{\Delta y}{\Delta x}$;
 - float $y = y_0$;
 - for (int $x=x_0$; $x<=x_1$; $x++$) {
 - $y += m$;
 - draw(x, round(y));
 }
- Computational cost:
 - n times addition
Limitations

- Missing pixels
- Works great if \(|m| < 1\)
- Must reverse the roles of \(x\) and \(y\) if \(|m| > 1\)
- Error accumulation
- Slope \(m\) is a fractional number
- May not be able to precisely represented in a computer

Straightforward Approach II

- Based on parametric representation
- Incremental algorithm:
 - float \(dx = dk \times \Delta x\);
 - float \(dy = dk \times \Delta y\);
 - for (float \(k = 1\) ; \(k = 1\) ; \(k += dk, x += dx, y += dy\))
 - draw(\(\text{round}(x)\), \(\text{round}(y)\));
- Limitations:
 - Computational cost depends on the value of \(dk\)
 - Set \(dk = 1 / \max(\Delta x, \Delta y)\)
 - No missing pixel problem but error accumulation still exists

Midpoint Line Algorithm

- Origin:
 - First proposed by Bresenham in 1965.
 - Improved by Pitteway in 1967
- Advantage:
 - Incremental approach
 - Use integer arithmetic only
 - Fast
 - No error accumulation

Eight Cases

- \(\Delta x > 0, \Delta y > 0, |\Delta x| > |\Delta y|\)
- \(\Delta x > 0, \Delta y < 0, |\Delta x| > |\Delta y|\)
- \(\Delta x < 0, \Delta y > 0, |\Delta x| > |\Delta y|\)
- \(\Delta x < 0, \Delta y < 0, |\Delta x| > |\Delta y|\)
- \(\Delta x > 0, \Delta y > 0, |\Delta y| > |\Delta x|\)
- \(\Delta x < 0, \Delta y < 0, |\Delta y| > |\Delta x|\)
- \(\Delta x > 0, \Delta y < 0, |\Delta y| > |\Delta x|\)
- \(\Delta x < 0, \Delta y > 0, |\Delta y| > |\Delta x|\)

Consider Case 1 First

- \(\Delta x > 0, \Delta y > 0, \Delta x > \Delta y, |\Delta x| > |\Delta y|\)
- Others can be handled by suitable reflections about the principle axes
 - Case 8 is reflection over \(x\) axis
 - Case 4 is reflection over \(y\) axis
- ...

Basic Idea

- Assume \((u, v)\) is selected
- Need to chose between \((u+1, v)\) and \((u+1, v+1)\)
 - If \(M\) is above the line, pick \((u+1, v)\)
 - Otherwise, pick \((u+1, v+1)\)
Relative Position of a Point

- The relative position of point \((u,v)\) to the line can be determined using the sign of the implicit line function.
- Since \(a=\Delta y>0\) & \(b=-\Delta x<0\)
- On the line: \(F(u,v)=0\)
- Above the line: \(F(u,v)<0\)
- Below the line: \(F(u,v)>0\)

First Decision

- Line starts from \((x_0,y_0)\)
 - \((x_0,y_0)\) should be picked.
 - \(M\) is \((x_0+1,y_0+\frac{1}{2})\)
- Let \(d=F(M)\):
 - \(=a(x_0+1)+b(y_0+\frac{1}{2})+c\)
 - \(=a\Delta y-b\Delta x+c-a-b/2\)
 - \(=F(x_0,y_0)+a+b/2\)
 - \(=\Delta y-\Delta x/2\)

Next Decision (Scenario 1)

- If \((u+1,v)\) is picked
 - \(M'\) is \((u+2,v+\frac{1}{2})\)
- Current \(d=F(M)\)
 - \(=a(u+1)+b(v+\frac{1}{2})+c\)
- Next \(d'=F(M')\)
 - \(=a(u+2)+b(v+\frac{1}{2})+c\)
- Difference:
 - \(d'-d=a=\Delta y\)
- Update function:
 - \(d'=d+\Delta y\)

Next Decision (Scenario 2)

- If \((u+1,v+1)\) is picked
 - \(M'\) is \((u+2,v+\frac{1}{2})\)
- Current \(d=F(M)\)
 - \(=a(u+1)+b(v+\frac{1}{2})+c\)
- Next \(d'=F(M')\)
 - \(=a(u+2)+b(v+\frac{1}{2})+c\)
- Difference:
 - \(d'-d=a+b=\Delta y-\Delta x\)
- Update function:
 - \(d'=d+\Delta y-\Delta x\)

Overall Algorithm

- int \(x=x0, y=y0\);
- draw(\(x, y\));
- float \(d=\Delta y-\Delta x / 2.0\);
- while (\(x < x1\)) {
 if (\(d <= 0\)) {
 \(d += \Delta y\);
 \(x ++\);
 } else {
 \(d += \Delta y-\Delta x\);
 \(x ++; y ++\);
 }
 draw(\(x, y\));
}

Pure Integer Implementation

- int \(x=x0, y=y0\);
- draw(\(x, y\));
- int \(d2=\Delta y * 2 - \Delta x\);
- while (\(x < x1\)) {
 if (\(d2 <= 0\)) {
 \(d2 += \Delta y * 2\);
 \(x ++\);
 } else {
 \(d2 += (\Delta y - \Delta x) * 2\);
 \(x ++; y ++\);
 }
 draw(\(x, y\));
}