COMP 3301 — VISUAL COMPUTING AND APPLICATIONS

Winter 2018

Department of Computer Science
Memorial University of Newfoundland

Instructor:
Name: Minglun Gong
Phone: 864-3589
E-mail: gong@cs.mun.ca
Office: EN-2021A

Lectures:
Time slot: Monday, Tuesday, & Thursday 1:00 ~ 1:50pm
Room: EN-1051
Website: http://www.cs.mun.ca/~gong/Courses/comp3301/
Office hour: After lectures or by email appointments. Efforts will be made to respond to emails within 24h, with the exceptions of weekends and holidays.

Course Description:
Visual perception is responsible for most of our impressions about the world around us. This course introduces how computers are used to both mimic the human visual system (e.g., recognize shapes) and to create visual content (e.g. synthesize images). Related techniques on image processing, image analysis, and image synthesis are discussed under a unified framework. How visual computing principles were used to create visual effects in movies and commercials are also examined.

Prerequisite: COMP 2002

Evaluation:
Assignments (5): 40%
Midterm exam: 20%
Final exam: 40%

Note: If you missed the midterm or assignment deadline due to documented illness or emergency, notify the instructor within a week and the weights will be roll into the final exam.
The Desire2Learn website (https://online.mun.ca/) is used for posting all assignments and you are required to check regularly regarding to assignment
announcements and due dates. All assignments are due at the specified time and dates. Late submissions will not be accepted. Finished assignment must be submitted online via Desire2Learn. Physical submissions are not required.

Course Topics:

- **Introduction:**
 human perception; intensity & color; image acquisition; display hardware

- **Image basics:**
 image representation; intensity histogram; histogram operation; image blending;

- **Image filtering:**
 image filtering; smoothing & sharpening filters; Fourier transformation; frequency-domain filters;

- **Raster graphics:**
 line & circle generation; line clipping; polygon filling;

- **Binary images:**
 intensity thresholding; digital halftoning; morphology operation; distance transform;

- **Image analysis:**
 edge detection; Hough transform; region-based segmentation; corner detection;

- **Image synthesis:**
 geometric operations; warping & sampling; feature-based warping; image morphing;

- **Image matching**
 template matching; motion estimation; multiscale processing;

Teaching Schedule (Tentative):

<table>
<thead>
<tr>
<th>Week</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Human Perception</td>
<td>Intensity & Color</td>
<td>Image Acquisition Display Hardware</td>
</tr>
<tr>
<td>3</td>
<td>Image Representation</td>
<td>Intensity Histogram (Assignment 1)</td>
<td>Histogram Operation</td>
</tr>
<tr>
<td>4</td>
<td>Image Blending</td>
<td>Image Filtering</td>
<td>Smoothing Filters (Assignment 2)</td>
</tr>
<tr>
<td>5</td>
<td>Sharpening Filters</td>
<td>Fourier Transformation</td>
<td>Frequency-Domain Filters</td>
</tr>
<tr>
<td>6</td>
<td>Line Generation</td>
<td>Circle Generation</td>
<td>Line Clipping</td>
</tr>
<tr>
<td>7</td>
<td>Polygon Filling</td>
<td>Intensity Thresholding (Assignment 3)</td>
<td>midterm</td>
</tr>
<tr>
<td>8</td>
<td>Winter Semester Break</td>
<td>Winter Semester Break</td>
<td>Winter Semester Break</td>
</tr>
<tr>
<td></td>
<td>midterm review</td>
<td>Edge Detection</td>
<td>Hough Transform (Assignment 4)</td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>10</td>
<td>Digital Halftoning</td>
<td>Morphology Operation</td>
<td>Distance Transform</td>
</tr>
<tr>
<td>11</td>
<td>Region Segmentation</td>
<td>Corner Detection (Assignment 5)</td>
<td>Geometric Operations</td>
</tr>
<tr>
<td>12</td>
<td>Warping & Sampling</td>
<td>Feature-Based Warping</td>
<td>Image Morphing</td>
</tr>
<tr>
<td>13</td>
<td>Template Matching</td>
<td>Motion Estimation</td>
<td>Multiscale Processing</td>
</tr>
<tr>
<td>14</td>
<td>Easter Monday</td>
<td>Q&A for final</td>
<td></td>
</tr>
</tbody>
</table>

Additional Policies:

All lecture notes will be posted on the aforementioned course website. The lectures provided in this course, including any visual or audio recording thereof, are subject to copyright owned by Dr. Minglun Gong and, in some cases, the authors of the supplemental materials used in the course. It is prohibited to record or copy by any means, in any format, openly or surreptitiously, in whole or in part, in the absence of express written permission from Dr. Minglun Gong, any of the lectures or materials provided or published in any form during or from the course.

Memorial University of Newfoundland is committed to supporting inclusive education based on the principles of equity, accessibility and collaboration. Accommodations are provided within the scope of the University Policies for the Accommodations for Students with Disabilities (http://www.mun.ca/policy/site/policy.php?id=239). Students who may need an academic accommodation are asked to initiate the request with the Glenn Roy Blundon Centre at the earliest opportunity (www.mun.ca/blundon/).

Students are expected to adhere to those principles which constitute proper academic conduct. A student has the responsibility to know which actions, as described under Academic Offences in the University Regulations, could be construed as dishonest or improper. Students found guilty of an academic offence may be subject to a number of penalties commensurate with the offence including reprimand, reduction of grade, probation, suspension or expulsion from the University. For more information regarding this policy, students should refer to the University Regulations for Academic Misconduct (https://www.mun.ca/regoff/calendar/sectionNo=REGS-0748).