Outline
• Image pyramid:
 • Approximation pyramid
 • Prediction residual pyramid
• Subband coding
 • 1D & 2D subband analysis
• Applications of multiscale processing
 • Laplacian pyramid blending
 • Multiscale edge detection

Image Pyramids
• A collection of decreasing resolution images arranged in the shape of pyramid
 • The base of the pyramid contains a high-resolution image
 • Both size & resolution of the image decrease as you move up to the top
• Base 2 image pyramid:
 • Resolution at base level is \(N \times N \) \((N = 2^k) \)
 • Total pixels in a fully populated pyramid
 \[N^2 + \left(\frac{N}{2} \right)^2 + \left(\frac{N}{4} \right)^2 + \ldots + 4 + 1 \leq \frac{5}{3} N^2 \]

Approximation Pyramid
• The original image is kept at the base of the pyramid
• Images in upper level of the pyramid are the coarse approximations of the original image
 • Image at level \(k-1 \) is calculated using the image at level \(k \):
 • Filter the image first, before downsampling it
 • Different filters can be used:
 • Mean filter \(\rightarrow \) Mean pyramid
 • Low-pass Gaussian filter \(\rightarrow \) Gaussian pyramid
 • No filter \(\rightarrow \) Sub-sampling pyramid (aliasing)

Prediction Residual Pyramid
• Top of the pyramid stores a low-resolution approximation of the original image
• Lower levels keep information for reconstructing the original image from low-resolution versions
 • Level \(k \) prediction residual is calculated by:
 • Create a prediction by upsampling the approximation at level \(k-1 \) and filtering the result
 • Compute the difference between the prediction and the approximation at level \(k \)
 • Prediction residual pyramid can be efficiently coded as most differences are close to zero
Subband Coding

- Decompose an image into a set of band-limited components (subbands)
 - Each subband is generated by bandpass filtering the input
 - The subbands can be downsampled without loss of information
- The subbands can be reassembled to reconstruct the original image without error
 - Reconstruction is accomplished by upsampling, filtering, and summing the individual subbands

1D Subband Analysis and Synthesis

- Average
- Low-pass filter
- High-pass filter
- Smoothing filter
- Analysis

- Difference
- Smoothing filter

2D Subband Analysis

- Low-pass filter
 - Rows
- High-pass filter
 - Columns
- Low-pass filter
- High-pass filter

Applications of Multiscale Processing

- Improve search
 - Template matching over different scales to find faces of different resolutions
- Preprocessing:
 - Texture mapping in computer graphics needs to access image at different blur levels
- Image Processing
 - Edit frequency bands separately
 - Laplacian pyramid blending
Manual Image Blending

Feathering
- Generate weight maps using distance transform
- Blend the 2 images using weighted average

Laplacian Pyramid Blending
- Pseudocode:
 - Build Laplacian pyramids L_A & L_B from images A & B
 - Build Gaussian pyramids G_A & G_B from the masks
 - Compute a combined pyramid L_C from L_A & L_B using G_A & G_B as weights
 - $L_C(p,q) = \frac{G_A(p,q) \times L_A(p,q) + G_B(i,j) \times L_B(i,j)}{G_A(p,q) + G_B(i,j)}$
 - Collapse the L_C pyramid to get the blended image
 - Upsample the higher level image then add the result to the lower level one

Multiscale Edge Detection