Template Matching

Outline
- Template matching problem
- Dissimilarity measures:
 - Sum of squared differences (SSD)
 - Sum of absolute differences (SAD)
- Similarity measures:
 - Cross-correlation (CC)
 - Normalized cross-correlation (NCC)
 - Zero-mean normalized cross-correlation (ZNCC)

Template Matching

- **Objective:**
 - Search for a given feature within the source image
- **Application:**
 - Feature detection
 - Tracking (motion estimation)

Template Matching Algorithm

- Create a small template image T for the feature
- For each pixel (p, q) in source image F:
 - Center the template image T over (p, q)
 - Calculate similarity or dissimilarity between T & local patches in F
 - Keep the pixels that give the high enough similarity or low enough dissimilarity

Dissimilarity vs. Similarity

- Dissimilarity measures:
 - Calculate the differences between 2 input image patches
 - Measuring result referred as matching, costs, matching error, or energy
 - Lower cost \rightarrow better match

- Similarity measures:
 - Calculate the similarities between 2 input image patches
 - Measuring result referred as matching scores
 - Higher score \rightarrow better match

Sum of Squared Differences

- Consider intensities in a 2D patch as a multi-dimensional vector
- Measure the square Euclidean distance between 2 vectors
- $SSD(F, T)(p, q) = \sum_{u, q} (F[p + u, q + v] - T[u, v])^2$
- Output range:
 - $0 \leq SSD \leq NL^2$
 - N: number of pixels
 - L: gray scale level

Tuesday, March 27, 2018 Minglun Gong 2

Tuesday, March 27, 2018 Minglun Gong 3

Tuesday, March 27, 2018 Minglun Gong 4

Tuesday, March 27, 2018 Minglun Gong 5

Tuesday, March 27, 2018 Minglun Gong 6
SSD Example
- SSD between a 2D array & a template
 \[
 \begin{bmatrix}
 8 & 6 & 2 & 3 & 1 \\
 1 & 2 & 1 & 6 & 4 \\
 2 & 5 & 3 & 4 & 1 \\
 1 & 3 & 0 & 5 & 5 \\
 \end{bmatrix}
 \quad \oplus \quad
 \begin{bmatrix}
 1 & 2 & 1 \\
 2 & 5 & 3 \\
 1 & 3 & 0 \\
 \end{bmatrix}
 \Rightarrow
 \begin{bmatrix}
 94 & 86 & 11 & \cdots \\
 0 & 79 & 61 & \cdots \\
 \cdots & \cdots & \cdots \\
 \end{bmatrix}
 \]
- SSD: 49 + 16 + 1 + 1 + 1 + 9 + 4 + 1 + 4 + 9 = 94
- \(94\) is the lowest cost
- Output range: 0 ≤ SSD ≤ NL

Sum of Absolute Differences
- SSD is sensitive to isolated noise
- SSD uses absolute differences instead of square differences
- More robust against noise but is not differentiable

Cross-Correlation
- Measure how similar two multi-dimensional vectors are using the dot product between the two
 \[
 CC(F, T)_{(p,q)} = \sum \sum F[p + u, q + v] \times T[u, v]
 \]
- Output range: 0 ≤ CC ≤ NL²

CC Example
- CC between a 2D image & a template patch
 \[
 \begin{bmatrix}
 8 & 6 & 2 & 1 \\
 1 & 2 & 1 & 6 \\
 2 & 5 & 3 & 4 \\
 1 & 3 & 0 & 5 \\
 \end{bmatrix}
 \quad \odot \quad
 \begin{bmatrix}
 1 & 2 & 1 \\
 2 & 5 & 3 \\
 1 & 3 & 0 \\
 \end{bmatrix}
 \Rightarrow
 \begin{bmatrix}
 54 & 54 & 70 & \cdots \\
 54 & 50 & 67 & \cdots \\
 \cdots & \cdots & \cdots & \cdots \\
 \end{bmatrix}
 \]
- CC: 8 + 12 + 2 + 2 + 10 + 3 + 2 + 15 + 0 = 54
- \(54\) is the highest match
- Output range: 0 ≤ CC ≤ NL²

The Problem of CC
- Relationship between SSD and CC:
 \[
 SSD(F, T)_{(p,q)} = \sum \sum F[p + u, q + v] - T[u, v] = \sqrt{\sum \sum (F[p + u, q + v] - T[u, v])²} = \sqrt{\sum \sum (F[p + u, q + v] + T[u, v] - 2F[p + u, q + v] \times T[u, v])²}
 \]
- The value of CC is influenced by:
 - The value of SSD
 - The template image is fixed
- Brighter areas in the image tend to have higher score

Illumination Changes
- All measures above assume that the source image and the template image have similar brightness
- They do not work well when the illumination changes
- Need to normalize the pixels' intensities so that illumination changes can be handled
Zero-mean Normalized CC

- Measure the dot product between two zero-mean adjusted vectors
 \[\text{ZNCC}(F, T) \equiv \text{NCC}(F - \bar{F}_u, T - \bar{T}) \]
 \[\equiv \frac{\sum \sum (F[p+u][q+v] - \bar{F}_u)(T[u][v] - \bar{T})}{\sqrt{\sum \sum (F[p+u][q+v] - \bar{F}_u)^2 \cdot \sum \sum (T[u][v] - \bar{T})^2}} \]

- Output range:
 \[-1 \leq \text{ZNCC} \leq 1 \]

Updated Variance Calculation

- Based on derivation:
 \[\text{var}(F) = \sum \sum (F[u][v] - \bar{F}_u)^2 \]
 \[= \sum \sum (F^2[u][v] - 2F[u][v]\bar{T} + \bar{F}_u^2 - \bar{F}_u^2) \]
 \[= \sum (\sum F^2[u][v] - N \bar{F}_u^2) \]

- Involve only one pass:
 Faster, but same complexity

ZNCC Calculation

- Similarity:
 \[\text{cov}(F, T) = \sum \sum F[p+u][q+v] \cdot T[u][v] - N \bar{F}_u \bar{T} \]

- Algorithm implementation:
 - Location independent calculation is same as last slide
 - Location dependent calculation is shown on the left

Naïve Variance Calculation

- Require 2 passes:
 - First pass computes mean
 - Second pass computes variance

- float sum = 0;
 for (int u=-w; u<=w; u++)
 for (int v=-h; v<=h; v++)
 sum += T[u][v] * T[u][v];
 float mean = sum / ((2*w+1) * (2*h+1));

- float var = 0;
 for (int u=-w; u<=w; u++)
 for (int v=-h; v<=h; v++)
 var += (T[u][v] - mean) * (T[u][v] - mean);

Normalized CC

- Measure the dot product between 2 normalized vectors
- \[\text{NCC}(F, T) = \frac{\sum \sum (F[p][q] \cdot T[u][v])}{\sqrt{\sum \sum F[p][q]^2 \cdot \sum \sum T[u][v]^2}} \]

- Output range:
 \[0 \leq \text{NCC} \leq 1 \]