Image Morphing

Outline
- Image transition
- Cross-dissolving
- Image morphing
 - Mesh-based morphing
 - Feature-based morphing

What is Image Morphing
- **Objective:**
 - Generate fluid transition between two images
- **Application:**
 - Special effects

Image Transition
- A sequence of images are needed to show the transition between the two images
- Parameter t controls position of the transition
 - $t=0$: source image
 - $t=1$: target image
 - $0<t<1$: intermediate images to be generated

Cross-Dissolving
- Blend two images using alpha compositing:
 - Set alpha for bottom (source) image to 1
 - Alpha for top (target) image varies from 0 to 1
- Software implementation:
 - $result(u,v) = (1-t) * source(u,v) + t * target(u,v)$

Cross-Dissolving Results
Image Morphing

- Combine image warping & cross-dissolving
- Use warping to change the shape
- Use image composition to change color
- Problems involved:
 - How to generate intermediate images through warping?

Mesh-based Morphing

- Proposed by G. Wolberg in 1990
- Basic idea:
 - Break the images into a grid of quadrilaterals.
 - Deform the quadrilaterals to match the source and the target.
- Steps:
 - User specify a set of corresponding points.
 - The algorithm generate a grid mesh.
 - Each pixel is warped using the 3 closest grid points.

Corresponding Grid Points

Algorithm Evaluation

Pros:
- Fast and intuitive
- Efficient algorithms exist for computing the mapping of each pixel from the control grid

Cons:
- Need to specify the number control points to use in advance.
- Points left unmodified are still used by the warping algorithm.
- Moving mesh points around may not always provide the desired effect

Feature-Based Morphing

- Proposed by Beier & Neeley in Siggraph 1992
- Use in Jackson’s MTV “Black & White”
- Basic steps:
 - Use line segments to define features in both source & target images
 - Interpolate line segments for the intermediate frames
 - Warp both source & target images to the intermediate frame
 - Blend between the warped results

Define Control Lines

- Draw control line segments along the key features of the source and target images
- Corresponding features should be show using corresponding control lines
Interpolate Control Lines
- For a given intermediate frame t:
 - Calculate the position of control line segments in frame t.
 - Can be done by linearly interpolating between the positions of corresponding line segments in source & target images.

Warp from Source
- Warp source image to intermediate frame:
 - Apply backward warping.
 - Use control lines defined in both intermediate frame & the source image.
 - The result distorts the source image to the shape defined by the control lines in the intermediate frame.

Warp from Target
- Warp target image to intermediate frame:
 - Use the same technique.
 - The result distort the target image to the shape defined by the control lines in the intermediate frame.
 - Key features line up with the warping results obtained from the source image.

Blend between the Two
- Blend the two warped images using the over operator:
 - i.e., apply cross-dissolving on the warped images.
 - The alpha value used depends on the parameter t.

Blend between the Two

Pseudocode for Morphing
```plaintext
for each intermediate frame $t$ {
    for each pair of control line segment $i$ {
        $L_{inter}[i] = (1-t)*L_{src}[i] + t*L_{tgt}[i]$;
    }
    for each pixel $P$ in intermediate image $t$ {
        $P_{src} = \text{warping}(L_{inter}, L_{src}, P)$;
        $P_{tgt} = \text{warping}(L_{inter}, L_{tgt}, P)$;
        $\text{inter}_img[t][P] = (1-t)\ast\text{src}_img(P_{src}) + t\ast\text{tgt}_img(P_{tgt})$;
    }
}
```