Image Morphing

Outline
• Image transition
• Cross-dissolving
• Image morphing
• Mesh-based morphing
• Feature-based morphing

What is Image Morphing
• Objective:
 - Generate fluid transition between 2 images
• Application:
 - Special effects

Image Transition
• A sequence of images are needed to show the transition between the two images
• Parameter t controls position of the transition
 - \(t = 0 \): source image
 - \(t = 1 \): target image
 - \(0 < t < 1 \): intermediate images to be generated

Cross-Dissolving
• Blend two images using alpha compositing:
 - Set alpha for bottom (source) image to 1
 - Alpha for top (target) image varies from 0 to 1
• Software implementation:
 - \(\text{result}(u,v) = (1-t) \times \text{source}(u,v) + t \times \text{target}(u,v) \)

Cross-Dissolving Results
Image Morphing
- Combine image warping & cross-dissolving
- Use warping to change the shape
- Use image composition to change color
- Problems involved:
 - How to generate intermediate images through warping?

Mesh-based Morphing
- Proposed by G. Wolberg in 1990
- Basic idea:
 - Break the images into a grid of quadrilaterals
 - Deform the quadrilaterals to match the source & the target
- Steps:
 - User specify a set of corresponding points
 - The algorithm generate a grid mesh
 - Each pixel is warped using the 3 closest grid points

Corresponding Grid Points

Algorithm Evaluation
Pros:
- Fast and intuitive
- Efficient algorithms exist for computing the mapping of each pixel from the control grid

Cons:
- Need to specify the number control points to use in advance
- Points left unmodified are still used by the warping algorithm
- Moving mesh points around may not always provide the desired effect

Feature-Based Morphing
- Proposed by Beier & Neeley in Siggraph 1992
- Use in Jackson’s MTV “Black & White”
- Basic steps:
 - Use line segments to define features in both source & target images
 - Interpolate line segments for the intermediate frames
 - Warp both source & target images to the intermediate frame
 - Blend between the warped results

Define Control Lines
- Draw control line segments along the key features of the source & target images
- Corresponding features should be show using corresponding control lines
Interpolate Control Lines

- For a given intermediate frame t:
 - Calculate the position of control line segments in frame t
 - Can be done by linearly interpolating between the positions of corresponding line segments in source & target images

Warp from Source

- Warp source image to intermediate frame:
 - Apply backward warping
 - Use control lines defined in both intermediate frame & the source image
 - The result distorts the source image to the shape defined by the control lines in the intermediate frame

Warp from Target

- Warp target image to intermediate frame:
 - Use the same technique
 - The result distort the target image to the shape defined by the control lines in the intermediate frame
 - Key features line up with the warping results obtained from the source image

Blend between the Two

- Blend the two warped images using the over operator
 - i.e., apply cross-dissolving on the warped images
 - The alpha value used depends on the parameter t

Morphing Results

$\Delta t = 0.25$
$\Delta t = 0.5$
$\Delta t = 0.75$

Pseudocode for Morphing

```plaintext
for ( each intermediate frame $t$ )
  for ( each pair of control line segment $i$ )
    $L_{inter}[i] = (1-t)*L_{src}[i] + t*L_{tgt}[i]$;
  for ( each pixel $P$ in intermediate image $t$ )
    $P_{src} = \text{warping}(L_{inter}, L_{src}, P)$;
    $P_{tgt} = \text{warping}(L_{inter}, L_{tgt}, P)$;
    $\text{inter}_\text{img}[t](P) = (1-t)*\text{src}_\text{img}[P_{src}] + t*\text{tgt}_\text{img}[P_{tgt}]$;
```