Feature-Based Warping

Outline
- Feature-based warping
 - Feature-based vs. function-based
- Mapping relations
 - Under single pair of control line segments
 - Under multiple pairs of control line segments

Feature-Based Warping
- Proposed by Beier & Neeley
 - Part of their feature-based morphing algorithm
- Basic ideas:
 - Use line segments to define features
 - Backward warping is used

Advantages of Feature-Based Approach
- Function-based:
 - The mapping relationship is specified using a global function
 - Any change to the function affect the whole image
 - Hard to design a function that can achieve a given effect
- Feature-based:
 - The mapping relationship is specified using control line segments
 - User can control where each feature in the image warps to
 - Easy to specify a warping effect through human interaction

Mapping Relation
- A control line segment in destination image defines a local coordinate
 - Pixel \(p \) is converted to local coordinate \((u, v)\)
 - Corresponding control line in source image also defines a local coordinate
 - The same \((u, v)\) is used to find pixel \(p' \)

Local Coordinate
- Defined by the control line & the direction perpendicular to the line
 - \(v \) is a distance:
 - Signed distance between point and the control line
 - \(u \) is a ratio:
 - Relative position of the point along the line
Warping Effects (Translation)

- The corresponding control lines:
 - Same lengths
 - Same directions
 - Different positions

Warping Effects (Scale)

- The corresponding control lines:
 - Same directions
 - Different lengths

Warping Effects (Rotation)

- The corresponding control lines:
 - Same lengths
 - Different directions

Vector Representation

- Coordinates of a point can be represented as a 2D vector from origin to point location:
 \[\mathbf{A} = (A_x, A_y) \]
- Vector length (l2-norm):
 \[|\mathbf{A}| = \sqrt{A_x^2 + A_y^2} \]
 - For unit vector, \(|\mathbf{A}| = 1\)
- Vector addition:
 \[\mathbf{A} + \mathbf{B} = (A_x + B_x, A_y + B_y) \]

Global to Local

- Calculate \(u \):
 \[(P - \mathbf{A}) \cdot (\mathbf{B} - \mathbf{A}) = |\mathbf{A}\mathbf{Q}| \times |\mathbf{AB}| \]
 \[u = \frac{|\mathbf{A}\mathbf{Q}|}{|\mathbf{AB}|} = \frac{(P-A)\cdot(P-\mathbf{A})}{|\mathbf{AB}|^2} \]
- Find direction \(\mathbf{D} \) that is perpendicular to \(\mathbf{AB} \):
 \[\mathbf{D} = (\mathbf{AB}_y, -\mathbf{AB}_x) = (B_y - A_y, -B_x + A_x) \]
- Calculate \(v \):
 \[(P - \mathbf{A}) \cdot \mathbf{D} = v \times |\mathbf{D}| \]
 \[v = \frac{(P - \mathbf{A}) \cdot \mathbf{D}}{|\mathbf{AB}|} \]
Local to Global

- Find direction \mathbf{D}' that is perpendicular to $\mathbf{A}'\mathbf{B}'$:
 \[\mathbf{D}' = (\mathbf{A}'\mathbf{B}'_y - \mathbf{A}'\mathbf{B}'_x) = (\mathbf{B}'_y - \mathbf{A}'_y, -\mathbf{B}'_x + \mathbf{A}'_x) \]
- The unit vector is $\mathbf{D}'/|\mathbf{D}'|$.
- Calculate \mathbf{P}' through following a set of vectors:
 \[
 \mathbf{P}' = \mathbf{A}' + u(\mathbf{B}' - \mathbf{A}') + \frac{v}{|\mathbf{D}'|},
 \]

Multiple Control Lines

- When more than one control lines are defined:
 - Each control line is used to compute a candidate point
 - Different candidate points are weighted-averaged to get the corresponding point

Warping Effects (Two Control Line Segments)

- Under two control line segments:
 - Both line segments try to control the warping effects
 - The final result is a compromise between the two control features

Weighted Average

- Motivations:
 - Longer control lines have stronger control
 - Closer control lines have stronger control
- Weight function:
 \[w_i = \frac{(l_i)^P}{(|\mathbf{D}'|)^P} \]
 - l_i: length of control line i
 - d_i: distance between point \mathbf{P} and control line i
 - a, b, c: adjustable parameters
 - Suggested setting: $a=0.0001$; $b=1$; $c=2$
- Final corresponding point:
 \[
 \mathbf{P}' = \frac{\sum (w_i\mathbf{P}'_i)/\sum (w_i)}{\sum (w_i)}
 \]

Distance Calculation

- The closest distance between a point \mathbf{P} and the line segment
 - NOT the line
- Algorithm:
 - if $u < 0$
 - $d = |\mathbf{P}-\mathbf{A}|$;
 - else if $u > 1$
 - $d = |\mathbf{P}-\mathbf{B}|$;
 - else
 - $d = |v|$;

Pseudocode

- for each pixel \mathbf{P} in the destination image
 - sum$_w = 0$; sum$_w$ = 0;
 - for each control line i in the destination image
 - (u,v) = transfer \mathbf{P} to the local coordinate of line i;
 - w = weight calculated for control line i;
 - \mathbf{P} = global coordinate of (u,v) in source image;
 - sum$_\mathbf{P}$ = \mathbf{P}; sum$_w$ = w;
 - destination(\mathbf{P}) = sampleSource(\mathbf{P}, sum$_w$);