Multiscale Processing

Outline
- Image pyramid:
 - Approximation pyramid
 - Prediction residual pyramid
- Subband coding
 - 1D & 2D subband analysis
- Applications of multiscale processing
 - Laplacian pyramid blending
 - Multiscale edge detection
 - Multiscale template matching

Image Pyramids
- A collection of decreasing resolution images arranged in the shape of pyramid
 - The base of the pyramid contains a high-resolution image
 - Both size and resolution of the image decrease as you move up to the top
- Base 2 image pyramid:
 - Resolution at base level is N\times N (N=2^J)
 - Total pixels in a fully populated pyramid

\[N^2 + \left(\frac{N^2}{2} \right) + \left(\frac{N^2}{4} \right) + \Lambda + 4 + 1 \leq \frac{4}{3} N^2 \]

Approximation Pyramid
- The original image is kept at the base of the pyramid
- Images in upper level of the pyramid are the coarse approximations of the original image
 - Image at level j-1 is calculated using the image at level j:
 - Filter the image first, before downsample it
 - Different filters can be used:
 - Mean filter -> Mean pyramid
 - Low-pass Gaussian filter -> Gaussian pyramid
 - No filter -> Sub-sampling pyramid (aliasing)

Prediction Residual Pyramid
- Top of the pyramid stores a low-resolution approximation of the original image
- Lower levels keep information for reconstructing the original image from low-resolution versions
 - Level j prediction residual is calculated by:
 - Create a prediction by upsampling the approximation at level j-1 and filtering the result
 - Compute the difference between the prediction and the approximation at level j
- Prediction residual pyramid can be efficiently coded as most differences are close to zero

Approximation & Prediction Model
Approximation & Prediction Residual Pyramids

- Decompose an image into a set of band-limited components (subbands)
- Each subband is generated by bandpass filtering the input
- The subbands can be downsampled without loss of information
- The subbands can be reassembled to reconstruct the original image without error
- Reconstruction is accomplished by upsampling, filtering, and summing the individual subbands

1D Subband Analysis and Synthesis

- Low-pass filter
- High-pass filter
- Smoothing filter

2D Subband Analysis

- Low-pass filter
- High-pass filter
- Rows
- Columns

Subband Coding Examples

Subband Coding Examples (Cond’t)
Applications of Multiscale Processing

- Improve search
 - Template matching over different scales to find faces of different resolutions
- Preprocessing:
 - Texture mapping in computer graphics needs to access image at different blur levels
- Image Processing
 - Edit frequency bands separately

Laplacian Pyramid Blending

- Pseudocode:
 - Build Laplacian pyramids \(L_A \) & \(L_B \) from images \(A \) & \(B \)
 - Build a Gaussian pyramid \(G_A \) & \(G_B \) from the masks
 - Compute a combined pyramid \(L_C \) from \(L_A \) & \(L_B \) using \(G_A \) & \(G_B \) as weights
 \[
 L_C(i, j) = \frac{L_A(i, j) \times G_A(i, j) + L_B(i, j) \times G_B(i, j)}{G_A(i, j) + G_B(i, j)}
 \]
 - Collapse the \(L_C \) pyramid to get the blended image
 - Upsample the higher level image then add the result to the lower level one

Blending Example

Multiscale Edge Detection