Region-based Segmentation

Outline
- What is region-based segmentation
- Region growing
 - Flood fill
- Watershed
 - Gradient watershed
 - Distance transform watershed
- K-mean clustering

Segmentation Problem
- Partition image R into n regions R_i, such that:
 - $\bigcup_{i=1}^{n} R_i = R$: all pixels belong to a region
 - $R_i \cap R_j = \emptyset$: regions must be disjoint
 - $P(R_i) = \text{true}$: pixels within each region must satisfy a predicate function defined
 - $P(R_i \cup R_j) = \text{false}$: regions are different in the sense of predicate

Region-based Segmentation
- Aims to determine the regions directly
- Thresholding & edge detection also segment images
 - Thresholding analyzes histogram and suggests segmenting criteria
 - Edge detection extracts object boundaries, which need to be connected to form closed regions

Region Growing
- A family of methods that groups pixels or sub-regions into larger regions based on predefined criteria for growth
 - Starts with a set of "seed" points
 - Append to each seed point its neighboring pixels based on gray level, texture, color, shape...

Flood Fill
- Simplest region growing algorithm
 - Start with a single seed pixel
 - Label all similar neighboring pixels with a uniform color
 - Output a single contiguous region
 - Similar to flood fill for polygon filling
Seeded Region Growing

- Find all connected components in input seed map $S(x,y)$;
- Erode each connected component to 1 pixel;
- Label remaining pixels as 1 and other pixels in S as 0;
- Form an image f_g such that, at a pair of coordinates (x,y), let $f_g(x,y) = 1$ if the is satisfied otherwise $f_g(x,y) = 0$.
- Label each connected component in g with a different region label. This is the segmented image obtained by region growing.

Watershed

- Geological watershed separates adjacent drainage basins
- Watershed segmentation is defined on a grayscale image
 - It treats it as a topographic map
 - Brightness of each pixel represents its height
 - Finds the lines that run along the tops of ridges

Types of Points

- 3 types of points in a topographic interpretation:
 - Points belonging to a regional minimum
 - Catchment basin or watershed of regional minimum:
 - Points at which a drop of water would fall to a single minimum
 - Divide lines or watershed lines:
 - Points at which a drop of water is equally likely to fall to more than one minimum
 - Identifying all watershed lines gives us segmentation boundaries

Watershed by Flooding

- For each k from min to max intensity:
 - For each group of pixels with intensity k:
 - If doesn't adjacent to any existing region, start a new region;
 - Else is adjacent to one existing region:
 - Add the group of pixels to the region;
 - Else:
 - Mark as boundary;
- The algorithm requires traverse all pixels under each intensity level
- More efficient algorithm is proposed later
- Uses priority queue to organize the pixels

Priority-Flood

- A set of markers are chosen, which specifies where the flooding shall start:
 - Each marker is given a different label:
 - Neighboring pixels of each marked area are inserted into a priority queue with a priority level corresponding to the gradient magnitude of the pixel
- Repeat:
 - Extract the pixel with the lowest priority from the queue:
 - If the neighbors of the extracted pixel that have already been labeled all have the same label:
 - Label the pixel with their label:
 - All non-marked neighbors that are not yet in the priority queue are put into the priority queue;
 - Else:
 - Mark as boundary;
- Until the priority queue is empty
Gradient Watershed

- Watershed is often applied to gradient magnitude images
- Homogeneous regions with low gradiences correspond to catchment basins
- Watershed lines run along region boundaries
- Due to noise in gradient, over-segmentation might occur

Distance Transform Watershed

- Watershed can also be applied to distance transform of binary images
- Often used for object counting
- First apply thresholding to generate binary image
- Then perform distance transform
- Finally segment objects based on shape contour

K-means Clustering

- Perform segmentation in feature space
 - Based on pixel color, local texture descriptor, etc.
 - Non-adjacent pixels may be assigned to the same cluster
- Capable of segmenting color images

Demo on a 2D Case