Line Generation

Outline
• Line generation problem
• Line equations
• Naïve approaches:
 • Based on explicit representation
 • Based on parametric representation
• Midpoint line drawing algorithm

Line Generation Problem
• How to display a straight line from \((x_0, y_0)\) to \((x_1, y_1)\) on a monitor?
 • Select pixels that are closest to the line
 • Do it efficiently
• Simplifications:
 • Lines are 1 pixel wide
 • No need for anti-aliasing

Line Equations
• Explicit representation:
 • \(y = m \cdot x + b \)
 • \(m = \frac{\Delta y}{\Delta x} \) (slope)
 • \(b = y_0 - m \cdot x_0 \) (Y-intercept)
• Parametric function:
 • \(x = x_0 + k \cdot \Delta x \)
 • \(y = y_0 + k \cdot \Delta y \)
• Implicit representation:
 • \(F(x, y) = ax + by + c = 0 \)
 • \(a = \Delta y, \ b = -\Delta x \)
 • \(c = \Delta x \cdot y_0 - \Delta y \cdot x_0 \)

Approach Based on Explicit Representation
• Algorithm:
 • float \(m = \frac{\Delta y}{\Delta x} \);
 • for (int \(x=x_0 \); \(x<=x_1 \); \(x++ \)) {
 • float \(y = y_0 + (x - x_0) \cdot m \);
 • draw(\(x, \text{round}(y) \));
 }
• Computational cost:
 • \(n \) times multiplication
 • \(2\cdot n \) times addition/subtraction

Incremental Version
• Algorithm:
 • float \(m = \frac{\Delta y}{\Delta x} \);
 • float \(y = y_0 \);
 • for (int \(x=x_0 \); \(x<=x_1 \); \(x++, y+=m \)) {
 • draw(\(x, \text{round}(y) \));
 }
• Computational cost:
 • \(n \) times addition
Limitations

- Missing pixels
- Works great if $|m| < 1$
- Must reverse the roles of x and y if $|m| > 1$
- Error accumulation
- Slope m is a fractional number
- May not be able to precisely represented in a computer

Approach Based on Parametric Representation

- Algorithm:
 - $\text{float } dx = dk \times \Delta x$
 - $\text{float } dy = dk \times \Delta y$
 - for (float $k=0$; $k<=1$; $k+=dk$, $x+=dx$, $y+=dy$)
 - draw(round(x), round(y));
- Limitations:
 - No missing pixel problem but error accumulation still exists
 - Computational cost depends on the value of dk
 - Set $dk=1/\max(\Delta x, \Delta y)$
 - Either x or y increase by 1 each time

Midpoint Line Algorithm

- Origin:
 - First proposed by Bresenham in 1965.
 - Improved by Pitteway in 1967
- Advantage:
 - Incremental approach
 - Use integer arithmetic only
 - Fast
 - No error accumulation

Eight Cases

- $\Delta x > 0, \Delta y > 0, |\Delta x| > |\Delta y|$
- $\Delta x > 0, \Delta y > 0, |\Delta x| > |\Delta y|$
- $\Delta x < 0, \Delta y > 0, |\Delta x| > |\Delta y|$
- $\Delta x < 0, \Delta y > 0, |\Delta x| > |\Delta y|$
- $\Delta x < 0, \Delta y < 0, |\Delta x| > |\Delta y|$
- $\Delta x < 0, \Delta y < 0, |\Delta x| > |\Delta y|$
- $\Delta x > 0, \Delta y < 0, |\Delta x| > |\Delta y|$
- $\Delta x > 0, \Delta y < 0, |\Delta x| > |\Delta y|$

Consider Case 1 First

- $\Delta x > 0, \Delta y > 0, \& |\Delta x| > |\Delta y|$
- Others can be handled by suitable reflections about the principle axes
 - Case 8 is reflection over X axis
 - Case 4 is reflection over Y axis
 - ...

Basic Idea

- Assume (u,v) is selected
- Need to chose between $(u+1,v)$ and $(u+1,v+1)$
 - If M is above the line, pick $(u+1,v)$
 - Otherwise, pick $(u+1,v+1)$
Relative Position of a Point

- The relative position of point \((u,v)\) to the line can be determined using the sign of the implicit line function
- Since \(a=\Delta y>0\) & \(b=-\Delta x<0\)
- On the line: \(F(u,v)=0\)
- Above the line: \(F(u,v)<0\)
- Below the line: \(F(u,v)>0\)

Next Decision (Scenario 1)

- If \((u+1,v)\) is picked
 - \(M'\) is \((u+2,v+\frac{1}{2})\)
 - \(d'=F(M')\)

 \[a(u+2)+b(v+\frac{1}{2})+c \]

 - Previous \(d\) value is known
 - \(d=F(M)\)

 \[a(u+1)+b(v+\frac{1}{2})+c \]

 - Difference:
 - \(d'=d+\Delta y\)
 - Update function:
 - \(d'=d+\Delta y\)

Next Decision (Scenario 2)

- If \((u+1,v+1)\) is picked
 - \(M'\) is \((u+2,v+1\frac{1}{2})\)
 - \(d'=F(M')\)

 \[a(u+2)+b(v+1\frac{1}{2})+c \]

 - Previous \(d\) value:
 - \(d=F(M)\)

 \[a(u+1)+b(v+\frac{1}{2})+c \]

 - Difference:
 - \(d'=d+a+b=\Delta y-\Delta x\)
 - Update function:
 - \(d'=d+\Delta y-\Delta x\)

Overall Algorithm

- int \(x=x_0, y=y_0;\)
 - draw\((x, y)\);
 - float \(d = \Delta y - \Delta x / 2.0;\)
 - while \((x < x_1)\) {
 - if \((d <= 0)\) {
 - \(d += \Delta y;\)
 - \(x ++;\)
 - } else {
 - \(d += \Delta y - \Delta x;\)
 - \(x ++; y ++;\)
 - }
 - draw\((x, y)\);
 - }

Pure Integer Implementation

- int \(x=x_0, y=y_0;\)
 - draw\((x, y)\);
 - int \(d2 = \Delta y * 2 - \Delta x;\)
 - while \((x < x_1)\) {
 - if \((d2 <= 0)\) {
 - \(d2 += \Delta y * 2;\)
 - \(x ++;\)
 - } else {
 - \(d2 += \Delta y - \Delta x * 2;\)
 - \(x ++; y ++;\)
 - }
 - draw\((x, y)\);
 - }