Sharpening Filter

Outline
- What is sharpening
- Derivatives of digital functions
- Derivative filters:
 - Prewit filter
 - Sobel filter
 - Laplacian filter
- Sharpening filters:
 - Laplacian sharpening
 - High-boost filtering
 - Unsharp masking

Objectives:
- Highlight fine details in an image
- Enhance details that have been blurred
- Reduce blurriness in misfocused photos

1st Order Derivatives
- Properties:
 - Zero in flat segments;
 - Nonzero at the onset of a step or ramp
 - Nonzero along a ramp of constant slope

\[\frac{\partial f}{\partial x} = f(x+1) - f(x) = f(x) - f(x-1) \]

Example of Derivatives Calculation

2nd Order Derivatives
- Properties:
 - Zero in flat segments;
 - Nonzero at the onset and end of a step or ramp
 - Zero along a ramp of constant slope

\[\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x}\frac{\partial f}{\partial x} = f(x+1) + f(x-1) - 2f(x) \]
Image Gradient

- Calculates the 1st order derivatives
- The gradient of an image is a vector field
- Gradient direction is the direction of most rapid change in intensity
- Gradient magnitude gives the edge strength

\[\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \]

\[\theta(\nabla f) = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \]

\[|\nabla f| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]

\[\nabla f[x,y] = f[x+1,y] - f[x,y] \]

\[\nabla f[x,y] = f[x,y+1] - f[x,y] \]

Prewit Filter

- Both \(D_x \) and \(D_y \) are separable:
- Apply mean filter in one direction and take derivative in the other direction

\[
D_{\text{Prewit}} = \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & -1 & 0 & 1 \\ -1 & 0 & 1 & 1 \end{bmatrix}
\]

Sobel Filter

- Both \(D_x \) and \(D_y \) are separable:
- Apply triangle filter in one direction and take derivative in the other direction

\[
D_{\text{Sobel}} = \frac{1}{4} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 & -1 & 0 & 1 \\ -1 & 0 & 1 & 1 \end{bmatrix}
\]

\[
D_{\text{Sobel}} = \frac{1}{4} \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}
\]

Result of Sobel Filter

Original: X-dir, Y-dir, Sobel sharpening

Image Laplacian

- Image Laplacian calculates the 2nd order derivatives
- The Laplacian of an image is a scalar field
- Digital image Laplacian is calculated using the color difference between nearby pixels and the center pixel

\[
\Delta f = \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}
\]

\[
\nabla^2 f[x,y] = -4 \times f[x,y] + f[x+1,y] + f[x-1,y] + f[x,y+1] + f[x,y-1]
\]
Laplacian Filter

- Image Laplacian can be calculated using one of the Laplacian filters
 - The number of neighbors involved in the filter can be either 4 or 8
 - The center coefficient of the filter can be either positive or negative

\[
\begin{bmatrix}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{bmatrix}
\quad
\begin{bmatrix}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{bmatrix}
\]

Laplacian Sharpening

- Obtain sharpening results by subtracting (or adding) the image Laplacian from the original image
 - Naïve implementation requires two rendering passes
 - Can be implemented in one pass using a modified filter

\[
f_{ls}(x,y) = f(x,y) - \Delta f(x,y)
\]

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\quad
\begin{bmatrix}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

Result of Laplacian Filter

- Original
 - 4 neighbors
 - 8 neighbors

Result of High-boost Filtering

- Nullify the darkening effect of high-pass filter by adding original image's intensity
 - Parameter A controls the contribution:
 - A=1: Laplacian filter
 - A=2: Laplacian sharpening
 - 1<A<2: Limited low frequency
 - A>2: Brightened image with edge enhanced

\[
f_{hb}(x,y) = A \cdot f(x,y) - f_{ls}(x,y)
\]

\[
f_{ls}(x,y) = (A-1) \cdot f(x,y) + f_{ls}(x,y)
\]

\[
\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\quad
\begin{bmatrix}
1 & 1 & 1 \\
0 & 9 & 1 \\
0 & 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & 1 \\
0 & 9 & 1 \\
0 & 0 & 0
\end{bmatrix}
\]

Unsharp Masking

- Originates from darkroom photography:
 - Clamp a blurred positive to the original negative
 - Blurred positive cancels the low frequency signal
 - Develop the combined negative on contrasty photographic paper
 - Partial cancellation emphasizes the high frequency edges

- For digital processing:
 - Step 1: detect edges and create unsharp mask:
 - Subtract a smoothed version of an image from the image itself
 - Step 2: Increase contrast at edges
 - Selectively increase contrast along edges using unsharp mask
 - Can be done in one pass
Unsharp Masking Process

Blur → Subtract → Mask → Increase contrast