Outline

- What is smoothing
- Linear filters:
 - Mean filter;
 - Triangle filter;
 - Gaussian filter
- Non-linear filters:
 - Median filter
 - Kuwahara filter

Smoothing

- Objectives:
 - Reduce noise in the image;
 - Prepare images for further processing

Mean Filter

- Also called uniform filter or box filter
- Use the mean of its neighboring pixels’ intensities
- Equaling to convoluting the image with a kernel filled with same value

$$S_{mean} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Mean Filter Example

1 4 3 8 0 ...
0 8 1 7 4 ... [1 1 1] - 3 5 4 ...
2 3 5 6 2 ... [1 1 1] = - 4 6 5 ...
1 9 7 8 5 ... [1 1 1] - ...
[... ...]

- \((1 + 4 + 3 + 0 + 8 + 1 + 2 + 3 + 5) / 9 = 3\)
- \((4 + 3 + 8 + 8 + 1 + 7 + 3 + 5 + 6) / 9 = 5\)
- \((2 + 8 + 0 + 1 + 7 + 0 + 5 + 6 + 2) / 9 = 4\)
- \((0 + 8 + 1 + 2 + 3 + 5 + 1 + 9 + 7) / 9 = 4\)
- \((8 + 1 + 7 + 3 + 5 + 6 + 9 + 7 + 8) / 9 = 6\)
- \((1 + 7 + 0 + 5 + 6 + 2 + 7 + 8 + 5) / 9 = 5\)

Properties of Mean Filter

- Both separable and incremental

$$S_{mean} = \frac{1}{25} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$S_{mean} - S_{mean}^5 = \begin{bmatrix} -1 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
Naïve vs. Efficient Implementations

• for (int w = 0 ; w < width ; w++)
 • for (int p = w ; p < width-w ; p++) {
 • int sum = 0;
 • for (int v = -w ; v <= w ; v++)
 • for (int u = -w ; u <= w ; u++)
 • sum += F[q+v][p+u];
 • G[q][p] = sum / ((2*w+1) * (2*w+1));
 }
• for (int q = 0 ; q < height ; q++)
 • for (int p = w+1 ; p < width-w ; p++)
 • sum += F[q][p+w] – F[q][p-w-1],
 • T[q][p] = sum / (2*w+1);
• for (int p = w ; p < width-w ; p++)
 • for (int q = w+1 ; q < height-w ; q++)
 • sum += T[q+w][p] – T[q-w-1][p],
 • G[q][p] = sum / (2*w+1);

Triangle Filter

• Use the weighted average of its neighboring pixels’ intensities
 • Center pixel has the highest weight
 • Boundary pixels have the lowest weight

Properties of Triangle Filter

• Separable but not incremental
 • Complexity is O(M×N×W)

Properties of Triangle Filter (Cont’d)

• Can be considered as the convolution of two identical mean filters
 • Complexity is reduced to O(M×N)

Gaussian Function

• The Gaussian kernel is a quantized 2D Gaussian function
 • The size of the kernel depends on parameter σ
 • When σ=1:
 • G(0) = 0.399
 • G(1) = 0.242
 • G(2) = 0.054
 • G(3) = 0.004

Gaussian Filter

• Use true values of 2D Gaussian function:
 • Involves floating point calculation
 • The kernel is separable but not incremental
• Use quantized values:
 • Involves integer calculation only
 • May not be separable
• Use approximate values:
 • Efficient but inaccurate
Approximate Gaussian Filter

- Repetitive convolution using a mean filter:

\[
S_{\text{conv}} = S_{\text{mean}} \otimes S_{\text{mean}} \otimes S_{\text{mean}} = \frac{1}{729}
\]

Median Filter

- Use the median of neighboring pixels’ intensities:
 - Sort nearby pixels based on their intensities;
 - Use the intensity of the pixel in the middle;
 - No roundoff error
- Complexity:
 - \(O(M \times N \times W^2 \times \log W)\)
 - Faster approach exist

Kuwahara Filter

- One of the edge-preserving filters:
 - Smooth image without disturbing the sharpness and position of edges
- Basic idea:
 - Defines four square regions in the window
 - Calculate the mean and variance of each region
 - Use the mean of the region that has the smallest variance

Result Comparison I

<table>
<thead>
<tr>
<th>Original</th>
<th>Mean</th>
<th>Gaussian</th>
<th>Median</th>
</tr>
</thead>
</table>

Result Comparison II

<table>
<thead>
<tr>
<th>Original</th>
<th>Mean</th>
<th>Gaussian</th>
<th>Median</th>
</tr>
</thead>
</table>