Range of the Intensity

• The visible light emitted/reflect from an object varies from very dark to very bright
 • The luminous intensity of a candle is 1 candela
 • The sunlight is about 100,000 candela per m²
• Impossible to capture/represent intensity variations in the whole intensity range
 • The ratio between the maximum and minimum intensities considered is called “dynamic range”
 • Intensity variation smaller than the min is ignored (lack of details in shadow)
 • Intensity value larger than the max is truncated (blow out highlights)

Quantization of Intensity

• How to sample the intensity range using a set of discrete numbers?
 • Arithmetic sequence:
 • \(I_0=a, I_1=a+k, I_2=a+2k, I_3=a+3k\) ...
 • Geometric sequence:
 • \(I_0=a, I_2=a+k, I_2=a+k^2, I_3=a+k^3\) ...

Color

• Match a color using red, green, & blue
 • Some colors need negative weight for red
• CIE (Commission Internationale de l’Eclairage) defined 3 standard primaries:
 • X, Y, & Z
 • Can match all visible colors using only positive weights
CIE Chromaticity Diagram

- Chromaticity diagram is the X+Y+Z=1 plane in the CIE space
- Can be considered as the colors of lights that have the same total amount of energy

Monitor Gamut

- The range of colors that can be shown is called gamut
- The gamut of a typical monitor does not cover the entire space
 - The corners of the triangle depend on the emittance of the phosphors of the monitor
 - Certain colors cannot be shown

Color Models

- RGB:
 - Red, green, & blue
- CMY (CMYK):
 - Cyan, magenta, yellow (& black)
- HSV (HSL):
 - Hue, saturation, & value (lightness)
- YUV (YIQ)

RGB Model

- Additive color model:
 - Red + Blue = Magenta
 - Blue + Green = Cyan
 - Green + Red = Yellow
 - Red + Blue + Green = White
- Used by most of the monitors

sRGB vs. Adobe RGB

- sRGB (standard RGB) is an RGB color space created by HP & Microsoft
 - Matches what CRT monitors can display
 - Adobe RGB is an RGB color space developed by Adobe in 1998
 - Has a larger gamut than sRGB

CMY Model

- Subtractive color model:
 - Cyan (C) absorbs red
 - Magenta (M) absorbs green
 - Yellow (Y) absorbs blue
 - Used by many printers
Convert between RGB & CMY

- **RGB -> CMY**
 - \(C = 1 - R \)
 - \(M = 1 - G \)
 - \(Y = 1 - B \)

- **CMY -> RGB**
 - \(R = 1 - C \)
 - \(G = 1 - M \)
 - \(B = 1 - Y \)

CMYK Model

- Add the 4th color:
 - Black (\(K \))
 - Use black ink directly instead of mixing color inks

- Convert from CMY to CMYK
 - \(K = \min(C, M, Y) \)
 - \(C' = C - K \)
 - \(M' = M - K \)
 - \(Y' = Y - K \)

HSV (HSL) Model

- User-oriented color model:
 - Hue – Dominant wavelength
 - Saturation – Excitation purity
 - Value – Luminance

- HSL model is similar:
 - Use Lightness instead of Value

Convert RGB to HSV & HSL

- \(\text{Max} = \max(R, G, B); \)
- \(\text{Min} = \min(R, G, B); \)
- \(V = \text{Max}; \)
- \(\text{if} (\text{Max} = 0) \)
 - \(S = 0; \)
 - \(\text{else} \)
 - \(S = 1 - \frac{\text{Min}}{\text{Max}}; \)
- \(\text{else if} (L \leq 0.5) \)
 - \(S = \frac{\text{Max} - \text{Min}}{2L}; \)
- \(S = \frac{\text{Max} - \text{Min}}{2 - 2L}; \)

YUV Model

- Human perception color model
 - One luminance channel
 - Two chrominance channels
 - Chrominance is defined as the difference between a color and a reference white at the same luminance

- Used in PAL analog video & digital video
 - Human eyes are more sensitive to luminance than to chrominance
 - 5.5 MHz for \(Y \)
 - 1.8 MHz each for \(U \) & \(V \)

YIQ Model

- Align with human's color perception sensitivities:
 - \(I \) is the orange-blue axis:
 - \(= V \cos 33^\circ - U \sin 33^\circ \)
 - \(Q \) is the purple-green axis:
 - \(= V \sin 33^\circ + U \cos 33^\circ \)

- Used in NTSC color TV broadcasting
 - Eyes are most sensitive to \(Y \), next to \(I \), next to \(Q \)
 - 4.2 MHz for \(Y \)
 - 1.5 MHz for \(I \)
 - 0.55 MHz to \(Q \)
Convert RGB to YUV & YIQ

- Y = 0.299*R + 0.587*G + 0.114*B
- U = 0.492*(B - Y)
- V = 0.877*(R - Y)

- Y = 0.299*R + 0.587*G + 0.114*B
- I = 0.596*R - 0.275*G - 0.321*B
- Q = 0.212*R - 0.523*G + 0.311*B